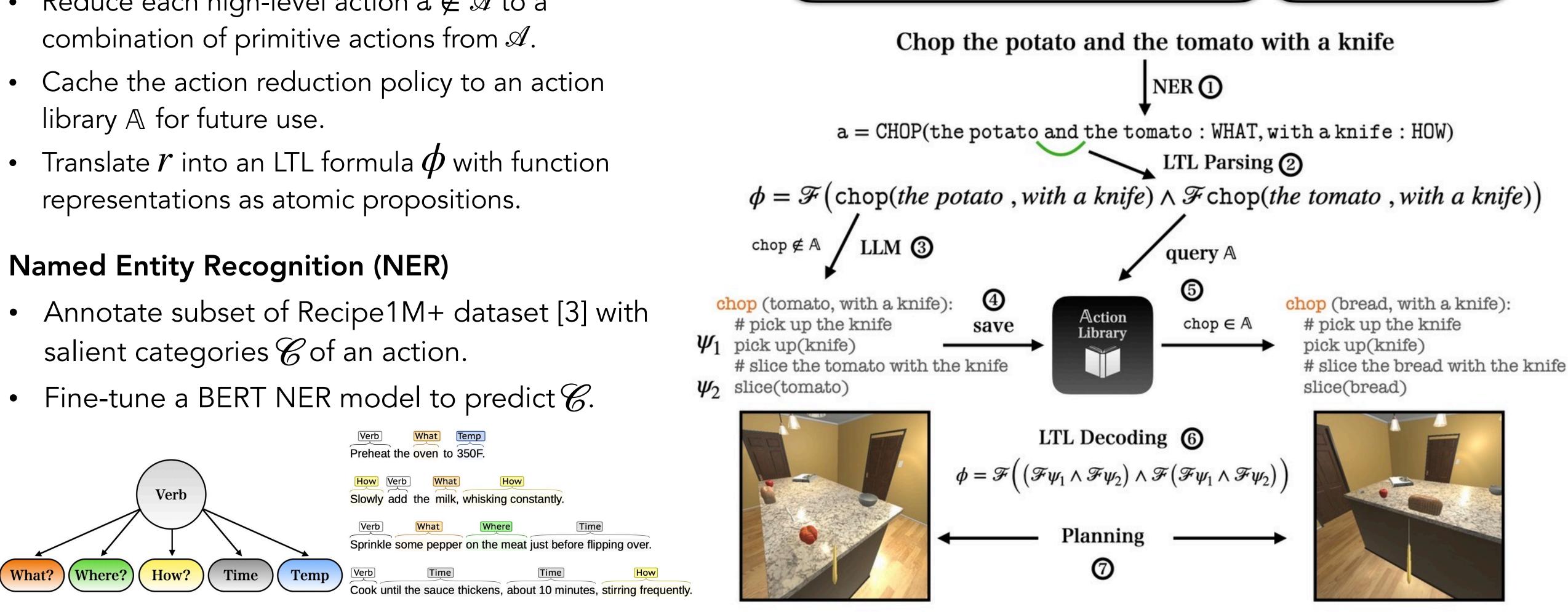


Angelos Mavrogiannis¹, Christoforos Mavrogiannis², Yiannis Aloimonos¹ ¹Department of Computer Science, University of Maryland, College Park

²Department of Robotics, University of Michigan

Goal: Given a cooking recipe in the form of natural language, extract unambiguous robot-executable plans with actions that are admissible in a kitchen environment.

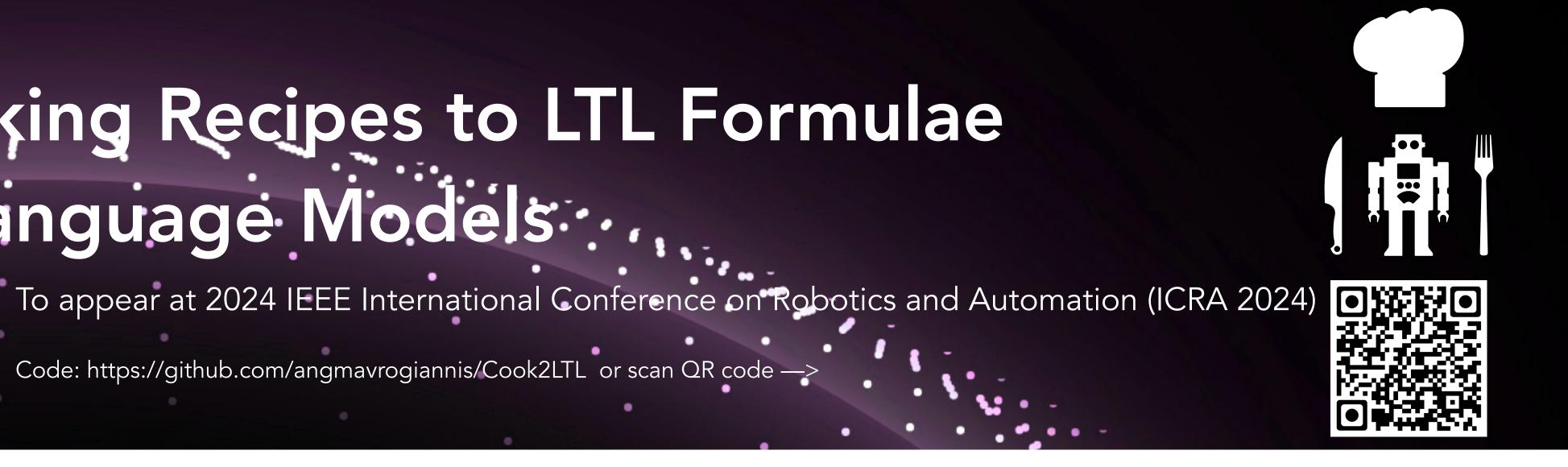

Challenges

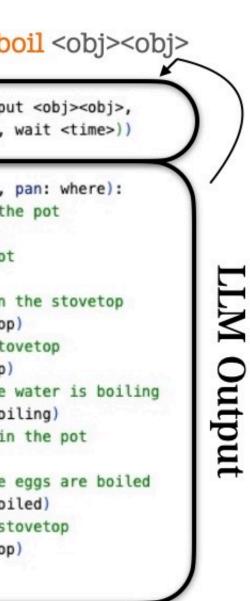
- Once acquiring the plan for a newly seen action, we add the • Cooking poses a unique set of challenges to robots [1]. action to the import to enable model to invoke it in subsequent executions.
- Natural language has a practically infinite space of actions, while robots can only execute a small set of actions.
- The language of recipes is ambiguous, with contextimplicit parts of speech, underspecified tasks, and explicit sequencing language (e.g. until, before) [2].

Approach

- Semantically parse a recipe r into a function representation for every detected high-level action.
- Reduce each high-level action $a \notin \mathscr{A}$ to a combination of primitive actions from \mathscr{A} .
- library A for future use.
- representations as atomic propositions.

- salient categories \mathscr{C} of an action.


The Machine Learning School in Okinawa 2024 March 04-15, 2024


Cook2LTL: Translating Cooking Recipes to LTL Formulae using Large Language Models

LLM Action Reduction

- Following Singh et al. [4], we prompt an LLM with a pythonic import of the admissible actions in the environment and two example task plans in the form of pythonic functions.
 - **Primitive Actions** def bake(cake: what, oven: where, 30 minutes: time) def boil(eggs: what, pan: where) def cook(pasta: what): # pick up the cake # put water in the pot # put water in the pot pick up(cake) put(water, pot) put(water, pot) # put the cake on the baking par # pick up pot # pick up the pot ompt pick up(pot) put(cake, baking pan) pick up(pot) t open the over # put pot on stoveto put(pot, stovetop) ppen (oven put(pot, stovetop) # turn on stovetop # put the baking pan in the over turn on the stovetop turn on(stovetop) put(baking pan, oven turn on(stovetop) # close the oven wait(water==boiled) close(oven) wait(water_is_boiling) # pick up the pasta # turn on the oven # put the eggs in the pot pick up(pasta) turn on(oven) put(eggs, pot put the pasta in the pot # wait for 30 minutes # wait until the eggs are boiled put(pasta, pot) wait(timer==30 minutes) wait(eggs_are_boiled) # wait # turn off the oven # turn off the stovetor wait(pasta==ready) turn off(oven) turn off(stovetop) # turn off stovetop turn off(stovetop) ef boil(eggs: what, pan: where)

We acknowledge the generous support of a NeuroPAC travel fellowship through the NSF AccelNet grant OISE 2020624.

Results

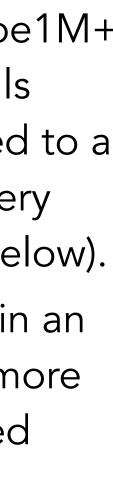
- We simulate Cook2LTL (AR+ \mathbb{A}) on held out Recipe1M+ recipes and observe that it decreases LLM API calls (-51%), Latency (-59%), and Cost (-42%) compared to a baseline system (AR*) that queries the LLM for every newly encountered action at runtime (See table below).
- Additional simulations on 4 simple cooking tasks in an AI2-THOR [5] kitchen show that Cook2LTL is still more time-efficient but fails when the 1st LLM-generated plan is incorrect.

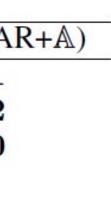
	Active Modules		
Metric	AR*	AR	Cook2LTL (A
Executability (%)	0.91 ± 0.01	0.92 ± 0.01	0.94 ± 0.01
Time (min)	14.85 ± 1.05	9.89 ± 0.46	6.05 ± 0.12
Cost (\$)	0.19 ± 0.01	0.16 ± 0.00	0.11 ± 0.00
API calls (#)	275 ± 0.00	231 ± 0.00	134 ± 0.00
$\phi = \mathscr{F}\texttt{Refrigerate}(Apple) = \mathscr{F}(\psi_1 \land \mathscr{F}(\psi_2 \land \mathscr{F}(\psi_3 \land \mathscr{F}\psi_4)))$			
F(OpenObject(Refrigerator)) A F(PickupObject(Apple)) Y2 Y2			
$\wedge \mathscr{F}(\operatorname{Put}$	Object(<i>Refrigerator</i>) ψ_3	∧ ℱCloseObject	$(Refrigerator)))) \\ \Psi_4 $

References

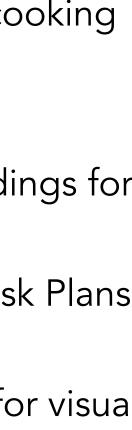
[1] Bollini et al. Interpreting and executing recipes with a cooking robot. Experimental Robotics 2013.

[2] Malamud et al. Cooking with Semantics. ACL 2014.


[3] Marin et al. A dataset for learning cross-modal embeddings for cooking recipes and food images. IEEE TPAMI 2019.


[4] Singh et al. ProgPrompt: Generating Situated Robot Task Plans using Large Language Models. CoRL 2021.

[5] Kolve et al. Ai2-THOR: An Interactive 3D environment for visual AI. RSS 2021.



COMPUTER SCIENCE UNIVERSITY OF MARYLAND

