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To be useful in household environments, robots may need to understand natural language in order

to parse and execute verbal commands from novice users. This is a challenging problem that requires

mapping linguistic constituents to physical entities and at the same time orchestrating an action plan

that utilizes these entities to complete a task. Planning problems that previously relied on querying

manually crafted knowledge bases can now leverage Large Language Models (LLMs) as a source of

commonsense reasoning to map high-level instructions to action plans. However, the produced plans

often suffer from model hallucinations, ignore action preconditions, or omit essential intermediate actions

under the assumption that users can infer them from context and prior experience.

In this proposal, we present our work on translating natural language instructions to visually



grounded verifiable plans. First, we motivate the use of classical concepts such as Linear Temporal

Logic (LTL) to verify LLM-generated action plans. By expressing these plans in a formal language

notation that adheres to a set of rules and specifications, we can generate discrete robot controllers with

provable performance guarantees. Second, we focus on grounding linguistic instructions to visual sensory

information and we find that Vision Language Models (VLMs) often struggle with identifying non-visual

attributes. Our key insight is that non-visual attribute detection can be effectively achieved by active

perception guided by visual reasoning. To this end, we present a perception-action API that consists

of perceptual and motoric functions. When prompted with this API and a natural language query, an

LLM generates a program to actively identify attributes given an input image. Third, we present ongoing

work using the Planning Domain Definition Language (PDDL) as an action representation. By binding

perceptual functions to action preconditions and effects explicitly modeled in the PDDL domain, we

visually validate successful action execution at runtime, producing visually grounded verifiable action

plans.
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Chapter 1: Introduction

1.1 Translating Natural Language Instructions to Verifiable Plans

To be useful in household environments, robots may need to understand and execute instructions

from novice users. Natural language is possibly the easiest way for users to provide instructions to

robots but it is often too vague. This motivates the need for mapping natural language to actionable,

robot-executable commands. This is a challenging problem, especially for complex activities that

include temporally correlated subtasks, such as following instructions in a manual, performing a delicate

assembly task, or executing a multi-step cooking recipe.

Cooking is one of the most common household activities and poses a unique set of challenges to

robots [1]. It usually requires following a recipe, written assuming that the reader has some background

experience in cooking and commonsense reasoning to understand and complete the instruction steps.

Recipes often feature ambiguous language [2], such as omitting arguments that are easily inferred from

context (the known “Zero Anaphora” problem [3]; see Fig. 3.3b where the direct object of the verb “cook”

is missing), or, more crucially, underspecified tasks under the assumption that the reader possesses the

necessary knowledge to fill in the missing steps. For example, recipes with eggs do not explicitly state

the prerequisite steps of cracking them and extracting their contents. Additionally, although inherently

sequential, recipes often include additional explicit sequencing language (e.g. until, before, once) that

clearly defines the temporal action boundaries.

Motivated by these observations, our key insight is that combining a source of cooking domain
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knowledge with a formalism that captures the temporal richness of cooking recipes could enable the

extraction of unambiguous, robot-executable plans. Building on this insight, we present Cook2LTL [4],

a system that receives a cooking recipe in natural language form, reduces high-level cooking actions

to robot-executable primitive actions through the use of LLMs, and produces unambiguous task

specifications written in the form of Linear Temporal Logic (LTL) [5] formulae (See Fig. 3.1). These

plans are then suitable for use in downstream robotic tasks. We build and evaluate our method based

on a subset of recipes from the Recipe1M+ corpus [6]. We run Cook2LTL on these recipes and show

that by caching the action reduction policy, we incrementally build a queryable action library and limit

proprietary LLM API calls with significant benefits in cost (−42%) and computation time (−59%)

compared to a baseline that queries the LLM for every unseen action at runtime. We demonstrate

the transferability of Cook2LTL to a robotic platform through experiments in a simulated kitchen in

AI2-THOR [7].

A natural extension when deploying such a system to a real robotic platform requires validating

action preconditions and postconditions with perceptual evidence during plan execution. This enables

detecting plan disruptions and dynamic changes in the environment by perceptually validating whether

an action was successfully executed. Instead of executing an action, failing, and then re-prompting an

LLM to repair the plan, our approach can predict failures resulting from unsatisfied action postconditions,

halt execution, and re-plan without succumbing to failure. The Planning Domain Definition Language

(PDDL) offers a well-structured task representation that is convenient for modeling cooking activities

by explicitly encoding action preconditions and effects in the PDDL domain. This is particularly useful

for tracking the state change of an ingredient or food item. State changes can be phase transitions,

for example butter melting on a pan, or changes in quantity in terms of the visible ingredients in the

kitchen, such as the tomato slices resulting from slicing a tomato. Using this representation also allows

us to leverage already existing PDDL infrastructure, such as VAL [8], a tool for syntactically validating

generated PDDL files.

To integrate these ideas in a robotic platform, we are developing NL2PDDL2Prog, a system that
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receives a cooking instruction in the form of natural language, produces a PDDL [9] goal specification,

and generates a plan that is parsed into an executable python program. By binding perceptual functions to

action preconditions and postconditions in the program, we visually ground successful action execution

at runtime. If any of these conditions is not satisfied, program execution halts and a precondition or

postcondition error is raised, displaying the specific source of failure. Our approach is similar to the

work of Shirai et al. [10] but they only leverage visual input at the initial stage to acquire a list of

available objects or in the case of plan failure. By incorporating perceptual feedback to ground action

preconditions and effects between every action, our proposed framework is applicable to a wider variety

of kitchen tasks of higher complexity.

1.2 Grounding Linguistic Instructions to Visual Sensory Information

Connecting natural language instructions to the physical world often requires robots to detect

object attributes in order to discriminate between candidate objects. This is a challenging problem as

instructions might be linguistically ambiguous, for example “Can you please get me the second mug

from the right on that shelf?”. Identifying attributes can also be required implicitly to determine the state

or affordance [11] of an object in order to verify the feasibility of an action. These attributes might not

be directly perceivable through vision sensors, for example “Is this lightweight enough to pick up?”.

To ground linguistic instructions in embodied settings, we focus on actively identifying object

attributes in a programmatic fashion, combining perceptual and motoric functions. Attributes usually

appear in the form of descriptive adjectives, some of which might not be adequately represented in

the training sets of data-driven perceptual models. Furthermore, while attributes might not necessarily

characterize an object in an absolute scale, they are often applicable based on context [12]. We argue that

attribute detection is highly contextual - an analogy of J. R. Firth’s famous quotation “You shall know a

word by the company it keeps” [13] applies to attributes. More specifically, characterizing an object as

big, tall, or heavy can sometimes depend on the other objects and their respective attribute values in the
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current environmental context. Ambiguity can also arise due to occlusion or partial observability [14].

These problems might not occur when studying attribute detection in static images, but can be common

in a household environment where a robot is tasked with executing user instructions. In these cases,

erroneous attribute detection can be detrimental, producing and executing an action plan involving an

incorrect object, or misinterpreting the affordance of an object and failing to even execute the action.

Existing attribute detectors [14–20] are mainly obtained by either supervised training [21] or

contrastive pre-training [22]. While attribute detection is an active area of research, it is often studied

separately from embodied reasoning. To bridge this gap, we model attribute detection as visual reasoning

with programs. This provides us with a powerful representation for reasoning in the presence of embodied

agents and allows us to utilize the space of plans and movements via robot actions as programs [23].

Summarizing these ideas, our main observation is that modern real-world robotic systems relying

on visually-driven attribute detection using VLMs in isolation can be myopic in language grounding.

Our key insight is that combining different VLMs as visual reasoning functions with a robot control

API can benefit from the code synthesis and commonsense reasoning capabilities of LLMs to actively

reason about attribute detection in the form of computer programs. We prompt an LLM with an attribute

detection API on a dataset that we curate, consisting of embodiment-crucial location-, size-, and weight-

related attributes and construct a perception-action API for active attribute detection [24]. Our key

contributions can be summarized as follows:

• We highlight some of the drawbacks of using VLMs for attribute detection in isolation and the

complementary reasoning capabilities that emerge by reasoning in the form of LLM-generated

visual programs.

• We construct a perception-action API by integrating visual reasoning with robot control functions

and demonstrate its benefits by invoking active perception behaviors towards solving attribute

detection queries.

• We release an end-to-end framework that integrates this perception-action API on a real robotic
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platform using visual servoing-based control.
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Chapter 2: Related Work

We begin our literature review by surveying robotic cooking (Sec. 2.1), which is our key domain

for studying the translation of natural language to verifiable robot-executable plans. We continue by

reviewing recent work in LLM planning (Sec. 2.2) and ways to validate LLM-generated plans using

classical concepts like LTL or PDDL (Sec. 2.3). Finally, we look into attribute detection (Sec. 2.4)

and visual reasoning with programs (Sec. 2.5) as they contribute towards our effort in invoking active

perception behaviors through LLM-generated programs.

2.1 Robotic Cooking

Cooking has been an important means of studying action understanding [25–28]. The EU project

POETICON [25] viewed cognitive systems as a set of languages {natural, visual, motoric} and integrated

these languages towards understanding cooking actions. Along these lines, Yang et al. [26] processed

YouTube videos using Convolutional Neural Networks (CNNs) and a grammatical approach [27] to

produce parse trees that could be used for generating cooking actions. Several works have focused on

modeling and learning the lower-level mechanics of manipulation in cooking actions with the end-goal

of building intelligent aspiring robot chefs [29–31]. Bollini et al. [1], Beetz et al. [28], and Liu et al. [29]

developed autonomous end-to-end robotic cooking systems tailored to the specific tasks of baking, stir-

frying, and making pancakes, respectively. RoboCook [32] and Mobile ALOHA [33] recently introduced

versatile learning-based systems that intricately handle cooking-specific complex soft body manipulation

tasks and mobile manipulation tasks in the kitchen, respectively. Most of these works are constrained to
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preparing a unique dish [1, 28, 29], require significant adaptations and additional training [32] to support

novel recipes, or cannot handle verbal instructions as input [31, 33]. Translating recipes to actionable

robot plans is a challenging problem due to the linguistic richness and semantic ambiguity of recipes [2].

Recent approaches have built LLM-powered human-robot collaborative cooking interfaces equipped with

a human intention prediction module [34, 35]. We leverage LLMs to decompose abstract free-form

recipe text into executable robot plans [4]. Our AI2-THOR [7] simulation in Sec. 3.3.2 demonstrates

the transferability of our work to a real robot while allowing the system to adapt to new recipes. In

our ongoing work, proposed in Chapter 5, we incorporate perceptual evidence to visually ground action

preconditions and postconditions at runtime.

2.2 LLM Planning

The field of robotics has been broadly and profoundly impacted by LLMs. Planning problems

that previously relied on querying manually-crafted knowledge bases [36] can now leverage LLMs as

a source of commonsense reasoning to map natural language commands to sequences of lower-level

actions that can be easier to parse by robot controllers [37–39]. This has been achieved predominantly

by a few-shot prompting scheme where the LLM receives a set of examples of sample tasks and action

plans as input, and generates an action plan for an unseen task at inference time. These LLM-based

works have shown great performance in grounding high-level actions to a well-defined set of actions for

task planning but come with certain limitations. For instance, the framework of Ichter et al. [37] cannot

handle open-vocabulary or combinatorial tasks, the one by Huang et al. [39] might produce action plans

including items that are not present in the current environment, and the model of Huang et al. [38] does

not guarantee that the returned actions are admissible in the current context.

To constrain the output to a given environment, subsequent works leveraged the code synthesis

ability of LLMs to project natural language to an intermediate representation of commands-function

calls in the form of a computer program, bound by the more rigorous syntactic rules of programming
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languages [23, 40, 41]. More specifically, these works include action precondition checking through

conditional and assertion statements [23], reasoning about task execution using control flow tools [41] and

recursively defining undefined functions [40], or simply invoking VLMs in task execution functions [42].

In the context of cooking, Wang et al. [43] have used LLMs to break down high-level cooking actions into

actionable plans. However, their approach requires access to demonstrations of the intermediate steps of

the cooking task at hand. In our work [4], we adapt the methodology proposed by Singh et al. [23], where

the task planning problem is formulated as a pythonic few-shot prompting scheme. The prompt consists

of a pythonic import of a set of primitive actions, a definition of a list of available objects, and a few

example task plans in the form of pythonic functions. Their experiments showed that prompting an LLM

for task planning in a programmatic fashion outperforms verbose descriptive prompts by restricting the

output plan to the constrained set of primitive actions and objects available in the current environment.

Furthermore, many of these approaches focus predominantly on action planning and ground

linguistic constituents to physical entities by using a single call to an Open-Vocabulary object Detection

(OVD) model [22, 44–46]. Due to the limitations of these models [16], they might not be able to

handle attribute detection in challenging scenarios. Similar to [47], we combine the expressiveness of an

intermediate programmatic representation and the complementary reasoning capabilites of LLMs and

VLMs [48] to reason about attribute detection under an LLM-prompting scheme [24].

2.3 Validating LLM Output with Classical Concepts

While enforcing more rigor to the structure of the output by prompting the model to output a

computer program, there are no guarantees on the validity of the program [23], which might require

ad-hoc code reviewing to ensure compliance with the specifications of the environment. In long-horizon

planning, such methods still suffer from model hallucinations, ignoring action pre-conditions, or

omitting essential intermediate actions under the assumption that users can infer them from context

and prior experience [49]. To bridge this gap, a recent line of research has introduced formal logic
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and standardized formulations from classical AI planning as additional mechanisms to ensure plan

validity before deployment to the robot [4, 50–62]. One of these mechanisms is Linear Temporal Logic

(LTL) [5], which was initially used in formal verification for computer programs. Since then, it has

been extensively used in robotics [63–65] as a formalism that enables the extraction of guarantees on

robot performance given a robot model, a high-level description of its actions, and a class of admissible

environments.

There has been considerable work on translating natural language instructions to task specifications

in the form of LTL [51, 66–70] and its variants [53, 71] with the end-goal of using the output

specifications to generate an automaton that validates LLM-generated plans [55, 56]. Most approaches

try to address the main bottleneck which is the high cost of obtaining annotations of natural language with

their equivalent LTL logical forms. Gopalan et al. [66] orchestrate a data collection and augmentation

pipeline to build a synthetic domain and translate natural language to LTL formulae using Seq2Seq

models [72]. Alternatively, Patel et al. [67], Wang et al. [68] learn from trajectories paired with natural

language to reduce the need for human annotation, however a lot of trajectories are required to implicitly

supervise the translator. Berg et al. [69], Liu et al. [70] ground referring expressions to a known set

of atomic propositions and translate to LTL formulae using Seq2Seq models [73] and LLMs [74],

respectively. Similarly, Pan et al. [51], Chen et al. [54] use the paraphrasing abilities of LLMs to generate

synthetic datasets tackling the scarcity of labeled LTL data.

Our work [4] is more similar to the work of Chen et al. [54] and Hsiung et al. [75], abstracting

natural language to an intermediate representation layer before grounding to the final atomic propositions.

An important limitation of these methods is that they are based on thoroughly curated datasets or well-

structured synthetic data generation pipelines. On the contrary, we deal with unstructured free-form

recipe text scraped from the internet. Moreover, most of these works in embodied settings have mainly

been applied to navigation and simple pick-and-place tasks or combinations of these. Our web-scraped

cooking recipe corpus offers a richer and more diverse action space.

As a more human-readable specification language that has been widely used to enforce a
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standardized structure in long-horizon planning problems [76], PDDL [9] has been an alternative

mechanism to validate LLM-generated plans. Recent work has been translating natural language to

PDDL specifications [57–62] via LLM few-shot prompting. However, most of these approaches often

rely on feedback from interactions with simulators to evaluate predicates. In contrast, in our current

work we attach perceptual callback functions to action preconditions and postconditions and visually

ground the corresponding predicates, inspired by the work of Migimatsu and Bohg [77].

2.4 Attribute Detection

Attribute detection has been a fundamental problem in the computer vision community with early

work [21, 78–80] on learning visual attribute classifiers to describe unseen objects. There has been work

on identifying relative attributes [12, 81] but these approaches require prior training and can be limited to

a certain domain ([81] demonstrate relative attributes of shoes and facial characteristics), while we show a

general method [24] that works in a zero-shot fashion. Recent approaches have applied Open-Vocabulary

object Detection (OVD) task [16, 17] to attribute detection. The goal in OVD is to detect unseen classes

of objects defined at inference time in the form of textual queries. Bravo et al. [16] showed that the

performance of various VLMs in zero-shot attribute detection is still low compared to OVD. However,

most of these approaches focus on visually-perceivable attributes in disembodied settings. On the other

hand, we focus on embodiment-crucial attributes such as the weight of an object, leveraging the physical

reasoning capabilities of VLMs [82]. Our simulations in AI2-THOR and our robot demonstration (See

Fig. 4.1) shows that our end-to-end framework can invoke active perception behaviors to reason about

object attributes, inspired by prior work [14, 19].
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2.5 Visual Reasoning with Programs

Generating and executing programs for vision applications originated from Neural Module

Networks (NMNs) [83–85], on the basis of the idea that complex vision tasks are fundamentally

compositional. Motivated by this idea, NMNs decompose a task into trainable modules that learn

specific perceptual functions. However, these models produce domain-limited programs, rely on

hand-tuned parsers [83] or are difficult to optimize [84, 85]. To overcome these shortcomings, a recent

line of work has proposed a formulation of generating visual programs to deal with image-based

natural language queries through in-context learning with an LLM. The programs consist of pseudocode

instructions [86] or executable python code [87–89] and intermediate variables that map to computer

vision models, image processing subroutines, or LLMs. These intermediate variables are consumable

downstream and illustrate a step-by-step reasoning process towards the task at hand, which is primarily

related to language grounding or Visual Question Answering (VQA). Our work [24] invokes active

perception robot behaviors guided by visual programming towards attribute detection.

11



Chapter 3: Cook2LTL: Translating Cooking Recipes to LTL Formulae using Large

Language Models

3.1 Preliminaries

This section provides a short background on LTL and LLMs, which are the tools we are using in

our pipeline.

3.1.1 Linear Temporal Logic

LTL is a temporal logic that was developed for formal verification of computer programs through

model checking [5]. It is suitable for expressing task specifications and verifying system performance in

safety-critical applications. These task specifications are expressed through the use of this grammar:

ϕ ::= p | ¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 | G ϕ | F ϕ |ϕ1 U ϕ2 (3.1)

where ϕ is a task specification, ϕ1 and ϕ2 are LTL formulae, and p ∈ is an atomic proposition drawn

from a set P of atomic propositions (APs). ¬,∧,∨ are the known symbols from standard propositional

logic denoting negation, conjunction, and disjunction, respectively. As an extension, LTL supports

additional temporal operators. More specifically, G ϕ denotes that ϕ holds globally, F ϕ denotes that

ϕ must eventually hold, and ϕ1 U ϕ2 indicates that ϕ1 must hold for all time steps until ϕ2 becomes true

for the first time. In this work, we utilize LTL as a formal language to express temporally-extended
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Figure 3.1: Cook2LTL in AI2-THOR [7]: The robot is given the instruction Refrigerate the apple.
Cook2LTL produces an initial LTL formula ϕ (top left); then it queries an LLM to retrieve the low-
level admissible primitives for executing the action; finally it generates a formula consisting of 4 atomic
propositions (ψ1, ψ2, ψ3, ψ4) that provide the required task specification and yield these consecutive
scenes.
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cooking tasks.

3.1.2 Large Language Models

Given a piece of text W = {w1, w2, . . . , wn} consisting of n words wi, i = 1, . . . , n, a language

model estimates the probability p(W ). This is done in an auto-regressive manner, leveraging the chain

rule to factorize the probability [90]:

p(W ) = p(w1, w2, . . . , wn) =
n∏

i=1

p(wi|w1, . . . , wi−1) (3.2)

Generating text can then be achieved recursively. Given a set of preceding words {w1, w2, . . . , wi−1},

the model estimates the probability distribution for the next word p(wi|w1, . . . , wi−1). LLMs, such as

BERT [91] and GPT-3 [74] are pre-trained on large-scale internet corpora and have dominated across a

series of downstream natural language processing (NLP) tasks [92]. In this work, we leverage the domain

knowledge encoded into such models in order to reduce high-level tasks to actions on a lower level of

abstraction.

3.2 Translating Cooking Recipes to LTL Formulae

3.2.1 Problem Statement

Consider a robot in a kitchen, equipped with a limited set of primitive actions A. We assume that

a primitive action in a cooking environment can be described by a set of salient categories C ={Verb,

What?, Where?, How?, Time, Temperature}. We define an action description a as a

function consisting of a main Verb as the function name, with a set of one or more of the other
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Figure 3.2: Cook2LTL System: The input instruction ri is first preprocessed and then passed to the
semantic parser, which extracts meaningful chunks corresponding to the categories C and constructs a
function representation a for each detected action. If a is part of the action library A, then the LTL
translator infers the final LTL formula ϕ. Otherwise, the action is reduced to a sequence of lower-level
admissible actions {a1, a2, . . . ak} from A, and the reduction policy is cached to A for future use. The
LTL translator then yields the final LTL formulae based on the derived actions.

categories as its parameters:

a = Verb(What?, Where?, How?, Time, Temperature)

The robot is tasked with executing a cooking recipe R that consists of a list of k instruction steps

{r1, r2, . . . , rk}, where each instruction step ri is an imperative sentence in natural language describing

a robot command. Each instruction step ri may include one or more cooking actions. Our goal is to

generate a set of task specifications written in the form of a set of LTL formulae Φ = {ϕ1, ϕ2, . . . , ϕn}

that implement the recipe under the constraint of only including actions that belong to the set of primitive

actions A that the robot is capable of executing.

3.2.2 System Architecture

To solve this problem, we propose Cook2LTL, the system architecture summarized in Fig. 3.2.

Given an instruction ri and a set of actions A, Cook2LTL:
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1. Semantically parses ri into a function representation a for every detected high-level action.

2. Reduces each high-level action a /∈ A to a combination of primitive actions from A.

3. Caches the action reduction policy for future use, thereby gradually building an action library that

consists of parametric functions that express high-level cooking actions in the form of primitive

actions.

4. Translates ri into an LTL formula ϕi with function representations as atomic propositions.

Algorithmically, these steps are summarized in Alg. 1. In the following subsections, we expand on the

components of Cook2LTL in more detail.

Algorithm 1 Cook2LTL
Input: A high-level instruction step r, a set of primitive actions A, and an action library A
Output: An LTL action formula ϕ

1: A← A ∪ A
2: r ← fPRE(r) ▷ Preprocessing
3: {a1, a2, . . . , an} ← fSP (r) ▷ Semantic Parsing
4: A← {a1, a2, . . . , an}
5: ϕ← fLTL(a1, a2, . . . , an) ▷ Initial LTL Translation
6: for ai ∈ A do
7: if ai /∈ A then
8: {a1, a2, . . . , ak} ← fAR(ai) ▷ Action Reduction
9: ai ← {a1, a2, . . . , ak}

10: A← A ∪ {a→ a1, a2, . . . , ak} ▷ Caching
11: end if
12: end for
13: ϕ← fLTL(A) ▷ Final LTL Translation
14: return ϕ
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3.2.3 Semantic Parsing and Data Annotation

Our translation system requires a semantic parsing module capable of extracting meaningful chunks

corresponding to the parametric function representation components of a cooking action. To this end, we

fine-tune a named entity recognizer with the addition of salient categories C as labels. We choose a neural

approach over a syntactic parse because the latter would require arduous manual rule crafting for every

different mapping of part-of-speech (POS) tags to these categories. Additionally, explicit POS-tagging-

based approaches often struggle with handling the intricacies of cooking discourse, such as imperative

form sentences omitting context-implicit parts of speech.

In the absence of a labeled dataset with a schema matching C, we create our own data building upon

the large cooking recipe dataset Recipe1M+ [6]. Specifically, we consider a subset of 100 recipes from

Recipe1M+, leading to 1000 recipe instruction steps. We use brat [93] to manually annotate chunks in

each step corresponding to the following salient categories: C ={Verb, What?, Where?, How?,

Temperature, Time}, which is a similar annotation scheme as the one seen in recent work [94].

Fig. 3.3 shows these categories and a set of example recipe steps taken from Recipe1M+ [6]. Verb

is the main action verb in a recipe step. What? represents the direct object of the Verb and is often

an ingredient, but can correspond to other entities such as a kitchen utensil or an appliance. Where?

is usually a prepositional phrase, it implies a physical location (e.g. table, bowl) but can often be an

ingredient to which the Verb applies. How? is usually either a gerund form of a verb, expressing

concurrency and hence giving rise to a secondary cooking action, or complements the main cooking

action (e.g. “Drizzle with olive oil”). The Time category consists of temporal expressions composed

of keywords that are important for the translation of the commands to LTL formulae (until, before etc.).

Finally, Temperature can explicitly list the degrees (e.g. 350F) to which food should be cooked or

refer to a temperature-related state of some ingredient (e.g. medium heat). These salient categories form

the function representation of an action found in ri.
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(a) Salient categories C considered for semantic parsing.

(b) Recipe steps annotated with the salient categories C

Figure 3.3: We annotate Recipe1M+ [6] instruction steps with the salient categories C ={Verb,
What?, Where?, How?, Temperature, Time} and fine-tune a named entity recognizer to
segment chunks corresponding to C.
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Figure 3.4: Inspired by ProgPrompt [23], Cook2LTL uses an LLM prompting scheme to reduce a high-
level cooking action (e.g. boil eggs) to a series of primitive manipulation actions. The prompt
consists of an import statement of the primitive action set and example function definitions of similar
cooking tasks. The key benefit of using this paradigm is that it constrains the output action plan of the
LLM to only include subsets of the available primitive actions. We extend this prompting scheme by
reusing derived LLM policies. In this case, the action boil is added to future import statements in the
input prompt, enabling the model to invoke the derived boil function which is now considered given to
the system.
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3.2.4 Reduction to Primitive Actions

Some of the function representations captured in the previous step contain high-level actions that

might not be directly executable by the robot, which can only execute actions that belong to the primitive

set A. Therefore, our system requires a module capable of mapping an action a /∈ A to an action a ∈ A,

if possible, or reducing a to a sequence of actions a1, a2, . . . , ak where ai ∈ A, i = 1, 2, . . . , k. Our

system initially checks whether a ∈ A to validate a formula for execution, and if a ∈ A, a is forwarded

to the LTL translator.

LLM Action Reduction: If a /∈ A we employ an LLM-based methodology inspired by the work

in [23] to extract a lower-level plan exclusively consisting of primitive actions from A. Specifically, we

design an input prompt consisting of: i) a pythonic import of the available actions in the environment, ii)

two example function definitions decomposing high-level cooking actions into primitive sets of actions

from A, iii) the function representation a extracted by the semantic parsing module in the form of a

pythonic function name with its parameters. As shown in [23] and Fig. 3.4, the LLM follows the style

and pattern of the input function and only includes available actions in the output. The key advantage

of this method is the flexibility in changing the admissible primitive actions depending on the robot

capabilities and the environment. This change can simply be achieved by modifying the primitive actions

in the pythonic import.

Action Library: Extending ProgPrompt [23], every time we query the LLM for action reduction,

we cache a and its action decomposition for future use through a dictionary lookup manner. This

gradually builds a dynamic knowledge base in the form of an executable action library A consisting

of various high-level actions along with their function bodies made out of primitive actions from A. At

runtime, instead of only checking whether a detected action a matches an action a ∈ A, we additionally

check if a ∈ A. In case there is a match, we replace a with the action in A. Additionally, we add a to

the pythonic import part of the prompt, allowing the model to invoke it when generating future policies

(e.g. the action boil in Fig. 3.4). The key benefit comes from avoiding to continuously query an LLM
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for action reduction, thus replacing potential latency resulting from an LLM API call with a fixed O(1)

dictionary lookup time. It also reduces the cost associated with querying a proprietary LLM API.

3.2.5 LTL Translation

The final step in our pipeline translates the intermediate function representations acquired from

semantic parsing and action reduction into an LTL formula. The implicit sequencing of recipes is

elegantly captured by the sequenced visit specification pattern [95]:

F (l1 ∧ F(l2 ∧ . . .F ln))) (3.3)

This pattern has been used [67, 70, 96] to model a visit of a set of locations L = {l1, l2, . . . , ln} in

sequence one after the other in a navigational setting, adapted to the execution of consecutive cooking

actions a1, a2, . . . , an in our case. Building on this pattern, we acquire conjunction, disjunction, and

negation constituents for each segmented chunk corresponding to the categories C through a dependency

parse. Then, we write down a formula ϕ which includes high-level actions a with a combination of

the following LTL operators {(F : Finally), (∧ : and), (∨ : or), (¬ : not)}. Every action ai is

translated to one or more primitive actions from A. In the latter case, the generated low-level plan for ai

is parsed into a subformula ψi based on Equation 3.3. The Time parameter passed to the action reduction

LLM often includes explicit sequencing language (such as until, before, or once). The LLM has been

prompted to return a Wait function in these cases (see example in Fig. 3.4), which is then parsed into the

(U : until) operator and substituted in ψ. The final formula ϕ consists of subformulae ψ1, ψ2, . . . , ψn

comprised by primitive actions in A:

ϕ = F (a1 ∧ F(a2 ∧ . . .Fan))) = F (ψ1 ∧ F(ψ2 ∧ . . .Fψn))) (3.4)
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where: ψi = ai , ai ∈ A ,or

ψi = f(a1, a2, . . . , ak,O) ,O = {F ,∧,∨,¬,U}
(3.5)

3.3 Evaluation

3.3.1 Ablation Study

To investigate the performance of Cook2LTL, we conduct an ablation study against two variants.

For each run, the input is a recipe from a held-out subset of Recipe1M+ and the output is a series of

task specifications in the form of LTL formulae Φ towards executing the recipe under the constraints of

admissible actions A. In all the experiments we use the OpenAI API and the gpt-3.5-turbo model. The

initial preprocessing step consists of filling in the implicit objects (zero anaphora resolution) in the recipes

and segmenting each recipe into sentences. We begin by deploying a partial version of our system (AR*)

as a baseline, consisting of the preprocessing, semantic parsing, and action reduction modules. We expect

that our action reduction policy adheres to the admissible actions of the environment by a significant

amount. We incrementally add the functionality of invoking cached policies, first when encountering a

primitive action (AR), and then when an action is found in the action library (AR+A), starting from an

empty library and gradually building it with the LLM-generated policies along the way. We anticipate

a significant benefit in terms of computational load and cost efficiency resulting from capitalizing on

reusable policies, compared to querying the action reduction LLM for every unseen action encountered

at runtime. We formalized these insights into the following hypotheses:

H1: Our action reduction policy generation constrains the LLM output to the admissible actionsA

in our environment.

H2: Our enhanced Cook2LTL system that includes the action library component is more time- and

cost-efficient than the baseline action reduction-comprised partial system.
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Figure 3.5: Tasks we tested Cook2LTL in AI2-THOR (left to right): microwave the potato;
chop the tomato; cut the bread; refrigerate the apple.

Active Modules

Metric AR* AR Cook2LTL (AR+A)

Executability (%) 0.91± 0.01 0.92± 0.01 0.94± 0.01
Time (min) 14.85± 1.05 9.89± 0.46 6.05± 0.12
Cost ($) 0.19± 0.01 0.16± 0.00 0.11± 0.00
API calls (#) 275± 0.00 231± 0.00 134± 0.00

Table 3.1: Performance of Cook2LTL against baselines across 50 Recipe1M+ [6] recipes (10 runs per
recipe).

To evaluate these hypotheses, our metrics are: 1. Executability (%), which is the fraction of actions

in the generated plan that are admissible in the environment; 2. Time (min or sec) which measures the

runtime influenced by the LLM API calls; 3. Cost ($) which is the overall cost for a batch of experiments

and depends on the number of input and output tokens; 4. the number of the LLM API calls.

3.3.2 Results & Discussion

Based on the quantitative results in Table 3.1 we make the following observations regarding our

hypotheses.
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AR Cook2LTL (AR+A)

Task SR (%) Time (sec) SR (%) Time (sec)

Microwave the potato 5.4± 1.95 27.29± 3.66 8± 4.47 3.26± 1.30
Chop the tomato 2.4± 1.52 16± 0.96 4± 5.47 1.61± 0.76
Cut the bread 9± 0.71 12.85± 0.84 8± 4.47 1.12± 0.16
Refrigerate the apple 7.6± 0.55 14.6± 0.38 8± 4.47 1.56± 0.44

Table 3.2: We demonstrate the performance of Cook2LTL on 4 simple cooking tasks in AI2-THOR. We
observe that Cook2LTL (AR+A) is time efficient but propagates initial incorrect LLM-generated sets of
actions to subsequent runs.

H1: Our first hypothesis is confirmed. In every part of the ablation study the system has a high

executability with a maximum value of 94% when using the action library. This is a natural consequence

of incorporating a new action in the prompt every time it is decomposed to sub-actions by the LLM. The

policies for the cached actions are now part of the system, and hence they are considered admissible in

the environment, leading to an increased executability value.

H2: The enhanced action library-based Cook2LTL system (AR+A) outperforms the baseline (AR*)

and primitive action-focused variant (AR) in all 4 metrics. We have discovered that learning new action

policies through prompting an LLM and reusing them in a dictionary lookup manner in subsequent

recipes decreases the number of API calls by 51% and 50% compared to the AR* and AR versions of

the system. Consequently, a lower number of API calls leads to a significantly reduced runtime and cost.

More specifically, the integration of the action library into our system decreases runtime by 59% and 42%

compared to the AR* and AR versions, and cost by 42% and 31%, respectively.

3.3.3 Demonstration in AI2-THOR

We demonstrate the performance of Cook2LTL in a simulated AI2-THOR [7] kitchen environment

(See Fig. 3.1). AI2-THOR has a small set of ingredients and objects and hence cannot support the
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full execution of recipes found on the web; however the limited action space aligns with the notion

of primitive actions and offers room for highlighting the key ideas of our system. To showcase the

potential of our approach, we constructed a set of 4 kitchen tasks that are admissible in AI2-THOR and

executed them by invoking Cook2LTL. We assume that the kitchen is mise en place so the locations of

the objects are known to the agent. In AI2-THOR, we design a minimal parser that receives an LTL

formula and converts it to a series of actions. We adapt the imported primitive actions and example

functions in the prompt to the ones that are supported in the simulation. Fig. 3.5 contains screenshots

from our experiments. We run 5 sets of experiments where we execute each task 10 consecutive times. We

measure the success rate SR and execution time due to the LLM API calls and compare the performance

of the AR and Cook2LTL (AR+A) variants. The success rate is the fraction of executions that achieved

the task-dependent goal conditions (e.g. tomato=sliced) that we defined a priori. During our simulations

we observe that Cook2LTL is still significantly more time efficient compared to baselines, however its

SR is entirely dependent on the first LLM-generated plan, and fails when this plan is not executable (See

Table 3.2).

3.4 Limitations & Future Work

System: We annotated a small part of the Recipe1M+ dataset [6] with our salient categories but

we would need more data to improve the entity recognizer for reliably transferring the system to a real-

world robot. Finally, some actions being substituted by action library policies lead to non-executable

plans. Our system would benefit from an additional mechanism that robustly ensures the correctness of

the LLM-generated plans based on environment feedback.

Sim2real: AI2-THOR is not tailored towards simulating cooking tasks but rather supports the

general area of task planning. Thus, we would need a cooking-specific simulator to support a more

diverse set of recipes that correspond to the rich web-scraped recipes that we built our system on. In

terms of transferring simulation to a real robot, we plan to use the Yale-CMU-Berkeley (YCB) Object
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and Model set [97] towards supporting a basic set of simple cooking tasks for benchmarking preliminary

experiments.

Task representation: The final layer of our system uses LTL as an expressible notation tool

capturing temporal task interdependence, but our system is compatible with other task representations,

such as PDDL [98], which incorporates action preconditions and postconditions in the problem setting

and has recently been explored with LLMs [57, 60].
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Chapter 4: Discovering Object Attributes by Prompting Large Language Models with

Perception-Action APIs

4.1 Method

4.1.1 Problem Statement

Consider a robot equipped with a set of sensors S in a scene with a set of objects O. The robot

is tasked with executing a natural language instruction inst = f(a, g, o, img), where a is a high-level

action, g is an object attribute, o is an object, and img is an input image. Our goal is to determine whether

an object exists with this attribute, expressed by the predicate g(o), and localize it in img by obtaining its

bounding box coordinates X = {xmin, ymin, xmax, ymax}. If ∃o, such that g(o) holds, a visual navigation

policy π(a(X )) is deployed, which allows the robot to leverage its sensors S, navigate and manipulate

object o given its 2D bounding box coordinates X towards task completion.

We adopt a generalized definition of an attribute, viewing it as an abstract property of an object that

does not necessarily map to a visual representation, including primarily descriptive adjectives related to

the size (big) or weight (heavy) of an object, but also prepositional phrases indicating spatial relationships

(the second object from the left).
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Figure 4.1: Demonstration of our perception-action API solving a minimum distance query on a real robot
(left) and a minimum weight query in simulation (right). The LLM receives a perception-action API and
a natural language query as input (top). It then generates code that invokes API functions leveraging
on-board sensors (camera, distance sensor, force/torque sensor) to actively identify these attributes.
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Figure 4.2: We describe our end-to-end framework for embodied attribute detection. The LLM receives
as input a perception API with LLMs and VLMs as backbones, an action API based on a Robot Control
API, a natural language (NL) instruction from a user, and a visual scene observation. It then produces a
python program that combines LLM and VLM function calls with robot actions to actively reason about
attribute detection.

4.1.2 Prompt-based Attribute Detection

We adopt the methodology of Surı́s et al. [87] into constructing a Python API for attribute detection.

The API consists of a main ImagePatch class that is instantiated by an input image img. find is the

fundamental function of the API that uses an OVD model (MM-Grounding-DINO [99] or GLIP [100])

to locate an object o and return the detection-resulting cropped patch X from the image given a chunk of

natural language inst. While we do not explicitly define a function for spatial reasoning, we provide in-

context examples encoded in the docstring of the function. The examples perform pixelwise math given

bounding box coordinates X of detected objectsO that are returned from calls to find in order to reason

about relative object locations on the image frame. visual query calls a pre-trained VLM (BLIP-

2 [101]) to provide a textual answer to a visual query given an image. language query recursively

calls the LLM with a textual query such as the visually-extracted return value from visual query.

This API can be viewed as an internal dialogue between VLMs and LLMs, similar to the idea of Socratic

Models [48], but enhanced by structural programming tools hosted on a pythonic platform. In the

following subsections we describe the complementary reasoning capabilities that emerge from calling
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these functions.

4.1.3 Programmatic Reasoning

Reasoning in the form of programs inherits the expressiveness of programming languages through

control flow tools, data structures, and built-in methods. LLM-generated programs invoke loops to iterate

over detected object patches and conditional statements to determine whether an object exists (∃o) in

the input image img and whether it possesses an attribute g, grounding the predicate g(o). Python

lists are used to store instances of image patches dynamically with the append function. Other built-

in functions such as sort and the lambda function utilize horizontal and vertical coordinates of the

detected bounding boxes and their centroids within simple mathematical operations and leverage basic

geometrical notions (e.g. computing the area of an image patch) to reason about the size or relative

position of detected entities. The generated code is interpretable and mainly consists of elementary

arithmetic in the image frame. The commonsense reasoning component of the LLM proves to be essential

in mapping complex language queries to these computations, as well as adapting attribute interpretation

to image-specific contexts, as shown in Sec. 4.2.5.

4.1.4 Vision-Informed Language Reasoning

Combining LLMs and VLMs in the input API prompt unlocks complementary reasoning

capabilities through information passing between different model calls in the the context of an LLM-

generated program. This model interplay can be particularly efficient when dealing with non-visually

perceivable attributes, such as estimating the weight of an object. In this case, visual query can

serve as a zero-shot object recognition function, subsequently passing information to the input of the

language query, which deduces factual knowledge on the weight of the recognized object, as

explained in Sec 4.2.2. Similarly, when a task instruction involves an attribute that does not typically

describe an object in an absolute scale, recognizing adjacent objects in addition to the object at hand
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establishes context. Then, posing a textual query with this visually-acquired information might reduce

ambiguity and provide the correct grounding thanks to the domain knowledge of LLMs. We demonstrate

an empirical evaluation of such use cases in Sec. 4.2.

4.1.5 Embodied Attribute Detection

Attribute detection in embodied settings often requires active perception. To this end, we formulate

an action-perception API by integrating the attribute detection API with a high-level robot control API

(See Fig. 4.2). The robot control API is implemented as a Robot Python class that consists of sensors

as member variables and methods that map to simple navigation and pick-and-place actions. The robot

can navigate to an object with the go to object function which implements a visual navigation policy

by calling go to coords with an image patch X as a parameter. pick up and put on implement

picking and placing actions. Assuming the lack of an on-board RGB-D camera or a depth estimation

model, a robot could employ additional sensors to measure the distance to an object in order to reason

about scene geometry or depth. This can be achieved by the measure distance function which calls

focus on patch, a function that aligns the geometric center of the image frame to an object patch

and can then retrieve the distance sensor measurement to compute the distance from the camera to that

object. A demonstration on a real robot is shown in Fig. 4.1 (left). Similarly, measure weight can

measure the weight of an object grasped by the robot, under the precondition that the robot first navigates

and picks it up. These preconditions are encoded in the example use of the function in a docstring.

We integrate this perception-action API into an AI2-THOR simulated environment and a real robot and

demonstrate its benefits in Sec. 4.2.5.

4.2 Evaluation

We design a set of experiments to showcase some of the drawbacks of using OVD or VQA models

for attribute grounding in isolation and we highlight the complementary commonsense reasoning that
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emerges by visual reasoning with LLM-generated programs including actions.

4.2.1 Spatial Reasoning

We evaluate the spatial reasoning capabilities of the attribute detection API by comparing its ability

to ground linguistically complex spatial queries with an open-vocabulary object detector [100]. We

manually craft a dataset that consists of 200 challenging spatial queries based on the Odd-One-Out (O3)

Dataset [102]. Every image in this dataset includes multiple instances of an object or similar objects

with an instance being slightly different to stand out. We leverage the multiple instances of an object

to invoke reasoning that requires differentiating between objects based on their relative attributes rather

than obvious qualitative differences between entirely different objects. Therefore, instead of focusing on

relative attributes that localize the object with respect to another object of different type in the image [87,

103] (e.g. “the car to the left of the tree”), our 100 location queries require commonsense reasoning in

the form of counting and establishing the relative order of an arranged set of objects, such as “second

umbrella from the left at the second to last row” or “the window in the middle at the bottom”. Our 100

size queries utilize descriptive size-related adjectives (long, wide, short, large etc.) in their superlative

and absolute form, such as “the tallest item” or “the wide line”, respectively. We test the same queries

on both forms and expect that the superlative form will outperform the absolute, forcing a specific object

to stand out by emphasizing its attribute. We anticipate that the attribute detection API will outperform

OVD by incorporating pixelwise mathematical operations and expressive python utility functions.

4.2.2 Non-visually Perceivable Attributes

To evaluate more profound reasoning capabilities, we focus on the weight of an object as a

representative sample of non-visually perceivable attributes, as it is crucial for executing essential

manipulation tasks. In the absence of a dataset with a suitable schema for our use case, we prompt

GPT-4 to generate sets of objects of different weight, along with the ground truth label of the heaviest
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Figure 4.3: The accuracy of OVD (GLIP), VQA (BLIP-2), and VQA+GPT in determining the heaviest
object in an image.
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object. To simplify the task, we design the prompt so that the object weight distribution is monotonic

and clearly distinguishable by a human observer: Generate 100 triplets of objects where each object

is significantly heavier than the other (for example: feather, dog, car). After acquiring the generated

textual data, we utilize it to extract relevant images from the web and arrange them to form an image

dataset where each data sample is an image that includes three objects of monotonically decreasing

weight. Assuming some rudimentary commonsense reasoning functionality in VLMs [104], we expect

that they are capable of identifying obvious differences in weight and hence dealing with examples

that are intuitive to humans, such as selecting the heaviest object between a handbag, a kangaroo,

and a bus (See Fig. 4.5). We compare the performance of OVD: find(“a heavy object”), VQA:

visual query(“Out of these items, which one is the heaviest?”), and vision-informed language

reasoning (VQA+GPT) that is invoked by our prompt API: visual query(“What are the items in

this image?”)→ language query(“Out of these items, which one is more likely to be the heaviest

one?”).

4.2.3 Evaluation in Embodied Settings

To evaluate our perception-action API in embodied settings, we adapt it to a simulated AI2-

THOR [7] household environment. We assume that the robot comes with a proximity sensor and a

force/torque sensor mounted on the wrist of the gripper, capable of measuring the weight of an object.

To replicate the behavior of these sensors, we query the simulator for the distance between an object

centered on the frame captured by the on-board robot camera, and build a queryable dictionary that maps

an object to an approximate weight when the robot is holding that object. We measure the accuracy

(%) of our perception-action API in estimating the relative distances of objects from the robot camera,

and identifying the most lightweight object. Our baselines are OVD, VQA, GPT-4o, and the attribute

detection API (VQA/OVD+GPT-4). We use the following prompt templates: “Out of the {objects},

which one is closer to me?”, “Out of the {objects}, which one is the most lightweight?”. We anticipate
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that the LLM-generated programs from the perception-action API are capable of actively interacting with

the environment to identify object attributes leveraging sensor-powered visual reasoning functions and

robot actions.

4.2.4 Hypotheses

We formalize these insights into the following hypotheses:

H1: OVD+GPT outperforms OVD- and VQA-only baselines in location- and size-related queries.

H2: VLMs possess the rudimentary reasoning capability to tackle evident weight estimation

queries.

H3: The superlative form of a descriptive adjective yields a better grounding performance than the

absolute form.

H4: Our perception-action API solves attribute detection queries by actively interacting with the

environment.

To evaluate these hypotheses, we measure the grounding accuracy by comparing the bounding

boxes returned by OVD and OVD+GPT. For OVD, we report results from GLIP [100] since it

outperforms MM-Grounding-DINO [99] on our data. In the case of the weight attribute, we additionally

consider the textual output of VQA+GPT. We demonstrate results from GPT-3.5, GPT-4, and GPT-4o in

the embodied settings.

4.2.5 Results & Discussion

Based on the results in Fig. 4.3, Fig. 4.4, and Table 4.1 we make the following observations

regarding our hypotheses.

H1: Our first hypothesis is confirmed. We find that OVD+GPT significantly outperforms OVD

(See Fig. 4.4) in location queries by 134% and in size queries by 67%. Qualitative examples are shown

in Fig. 4.6. In example a, OVD and OVD+GPT correctly identify the apple as the small fruit. Example b
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Figure 4.4: We compare the accuracy of OVD-only (GLIP) with (OVD+GPT) on our location (left) and
size (right) datasets.

shows a common mutual failure case where the bounding box for one paper clip mistakenly includes all

of them. We also observe failure cases due to occlusion. Examples c, d show cases where OVD+GPT

outperforms OVD. In these examples, all instances of the object in the query are localized with the find

function, and then the coordinates of the bounding boxes and their centroids are used to compute relative

distances and areas and sort them, if needed. In terms of the size-related queries, GPT-4 can adapt the

generated code to the context of an image and interpret what dimension long or short corresponds to

based on the orientation of an object in an image. On the other hand, GPT-3.5 is more rigid and tends to

tie certain adjectives to hardcoded dimensions following common norms. For example, in Fig. 4.6 (c), it

cannot connect the adjective short to the red pepper, since it is horizontally aligned. Such minor details

explain the slight discrepancy in performance, which is still superior than vanilla OVD when identifying

attributes with an attribute detection API. We would need to add targeted examples in the prompt API

covering all failure cases to induce equal accuracy from both models. Finally, in example d, OVD+GPT-

4 understands that the arrangement of the tarts is forming a row and column pattern. On the contrary,

OVD fails to recognize this pattern, and OVD+GPT-3.5 exhibits a context-agnostic interpretation of

rows, dividing the image into parts based on the image height, which yields incorrect results.

H2: Our second hypothesis is only partially confirmed. Based on Fig. 4.3, the combination of
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Figure 4.5: An example where OVD and VQA fail to identify the heaviest object in the image (), but the
API prompt-generated code (VQA+GPT) returns the correct answer ().
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Figure 4.6: OVD (numbers in white denote the OVD confidence score) and OVD+GPT predictions are
shown with green and yellow bounding boxes, respectively. a shows an example of agreement between
OVD and OVD+GPT, b a mutual failure case, and c, d show cases where OVD+GPT exhibits superior
performance compared to OVD.

.
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Method Task

Weight Distance

OVD 0.14 0.64
VQA 0.64 0.56
Attribute Detection API 0.90 0.22
GPT-4o 0.88 0.70
Perception-Action API 0.96 0.94

Table 4.1: Performance of our perception-action API in 50 weight and 50 distance estimation queries in
simulated AI2-THOR [7] household environments against baselines.

VQA, followed by a call to an LLM, significantly outperforms OVD-only (+121%) and VQA-only

(+72%) solutions although we expected that all the models would be able to handle simple comparative

attribute detection tasks. We believe that the step-by-step reasoning process followed by the prompt API

leverages the strength of each model separately. On the contrary, burdening a model with additional

reasoning tasks upon the ones that it was naturally tasked with in the first place (zero-shot language-

conditioned object detection for GLIP, and zero-shot object recognition for BLIP-2) might be the reason

we are missing out on its full task-specific potential. Another potential reason for this discrepancy in

performance is that the pre-training objective of these models might not be aligned to our specific use

case, which is identifying non-visually perceivable attributes.

H3: Our third hypothesis is rejected, mainly because the absolute form of an adjective yields better

performance in the weight estimation task (See Fig. 4.3). In Fig. 4.3, Fig. 4.4, sup stands for superlative

adjective form in the prompt. GPT-4 demonstrates the same performance for both forms, therefore we

report a joint measurement for this model in Fig. 4.4.

H4: Confirming our hypothesis, our perception-action API solves both tasks and outperforms all

baselines based on the results shown in Table 4.1. In distance estimation, the robot first identifies an object
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patch with find, and then leverages its distance sensor by focusing on the detected image patch with

focus on patch and calling measure distance to get the measurement. In weight estimation,

after locating the patch with find, the robot navigates (go to object) and proceeds to pick up

every object and measure its weight using the force/torque sensor by calling measure weight. At

every measurement, the generated programs compare the currently measured value with a previously

stored minimum and update it if the current value is lower, finally yielding the minimum distance or

weight. In some cases, find cannot locate the object patches leading to failures. We believe that this

occurs because of the image quality of the simulated objects, which are not as realistic as the ones in

real-world images and the OVD model that find uses struggles to locate them. In distance estimation,

the generated code by the attribute detection API (OVD+GPT-4) incorrectly hardcodes the distance from

the object to the robot camera to the distance of the object from the geometric center of the image frame,

leading to a very low accuracy.

4.2.6 End-to-End Framework - Robot Demonstration

We integrate our perception-action API into a real robot by implementing a wrapper over a robot-

specific API. We deploy the combined end-to-end framework on DJI® RoboMasterTM EP [105], an

affordable ground robot with holonomic movement and pick-and-place capabilities. A demonstration of

our framework in action is shown in Fig. 4.1. Picking-and-placing an object first requires navigating

in front of it with the appropriate orientation (go to object). To this end, we leverage sensory

information to design a control policy for implementing the go to object function to navigate to

a detected object. The control policy is further divided into two sub-policies: i) a visual servoing-based

control policy for the lateral movement that aligns the center of the patch of the detected object to the

center of the image frame captured by the on-board robot camera (focus on patch), ii) a control

policy for the longitudinal movement that steers the robot towards a proximal position to the object at

hand based on an infrared distance sensor. The target distance from the gripper to an object is a pre-

40



computed functional gap, or in other words an experimentally determined sweet spot for picking and

placing. Each of these policies is separately handled by a hand-tuned Proportional-Integral-Derivative

(PID) controller. The robot is connected to a (local) computer via wifi connection and communicates

with a (remote) computing cluster through a client-server architecture running on an SSH tunnel. To

reduce latency due to the computational load of deploying a VLM on the cluster, we only run OVD

on the first frame captured by the robot camera, and then track the corresponding position(s) with the

Kanade–Lucas–Tomasi (KLT) feature tracker1 [106].

4.3 Limitations & Future Work

Sensor Integration: Our experiments provide some insights on failure cases and emerging

reasoning capabilities of VLMs in attribute detection. We demonstrate the applicability of our action-

perception API on a robot in simulation and in the real world. In the future we plan to leverage the

compositionality of our API and extend its sensing capabilities by incorporating more sensors (e.g. IMU,

temperature sensor) via wrapper functions, supporting the discovery of additional attributes through

active perception.

Error Propagation across Model Calls: In Sec. 4.2.5 we showed how the attribute API

(VQA+GPT) outperforms calling an OVD or VQA model in isolation. However, if the first call yields

an incorrect result, any downstream calls consume erroneous parameters and hence lead to an incorrect

final result. In the future we plan to develop mechanisms that leverage additional feedback from the

environment to catch such exceptions before errors propagate downstream.

1We follow the implementation in https://github.com/ZheyuanXie/KLT-Feature-Tracking.git.

41

https://github.com/ZheyuanXie/KLT-Feature-Tracking.git


Chapter 5: Proposed Work: Translating Cooking Instructions to Visually Grounded

Action Programs using PDDL as an Interface

5.1 Background & Problem Statement

5.1.1 Planning Domain Definition Language (PDDL)

PDDL is a standardized means of encoding classical AI planning problems, developed

by McDermott [9]. It clearly separates the representation of the planning problem into a domain

file and a problem file. The domain file includes a lifted representation of the state space and action

space. The state space defines the types of objects that are admissible in the environment and the

allowable states in the form of boolean predicates that consume objects of the given types. The action

space consists of STRIPS-style [107] actions with a set of objects as parameters, a set of preconditions

that are prerequisite predicate values for action execution, and a set of effects that correspond to the

resulting predicate values from successful action execution. The problem file enumerates the specific

instances of the objects in the environment, the initial states, and the goal of the plan, or in other words,

what state we want the world to be in at plan completion. The initial and goal states are both expressed

in the form of predicates.
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5.1.2 Problem Statement

Consider a mobile manipulation robot with an action space A. The robot is tasked with executing

a natural language instruction that involves completing a task in the kitchen. We adopt a STRIPS [107]

action representation, where each action ai ∈ A is described by a set of preconditions Pre(ai) and

a set of postconditions or effects Post(ai). These sets are defined in the form of boolean predicates

that represent the prerequisite states for action execution and the states resulting from successful action

execution, respectively. The kitchen is equipped with a set of objects O. We assume access to a robot

control API that maps high-level actions to low-level control policies and a camera sensor that streams

discrete visual observations of the scene before and after every attempt of performing an action. Our goal

is to acquire a finite sequence of actions that correctly executes the given task by acquiring perceptual

evidence that all preconditions and postconditions of every action are satisfied.

5.2 NL2PDDL2Prog

5.2.1 System Architecture

To solve this problem, we present NL2PDDL2Prog, a system with an architecture summarized in

Fig. 5.1. Specifically, our system:

1. Visually acquires a list of ingredients I, appliances A, utensils U , and containers C from a scene

observation.

2. Generates a PDDL problem file given a natural language instruction, a domain file, and a list of

available objects in the environment.

3. Syntactically validates [8] the generated problem file.

4. Uses a classical planner [108] to acquire a feasible plan given the domain file and the generated
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Figure 5.1: Schematic overview of our approach. A scene observation of the current state of the kitchen
is passed to a VLM which returns a list with the ingredients, appliances, utensils, and containers, in
accordance with the taxonomy of our PDDL domain. The LLM receives this list, the domain file
including the admissible action space and state space, and a natural language instruction. It then returns
a PDDL problem file which is syntactically validated using VAL [8] and passed along with the domain
file to a planner [108]. The planner produces a plan that consists of a sequence of admissible actions to
execute the instruction. The output plan is then parsed into a python program that calls a high-level skill
API to execute actions and a VLM to ground predicate values corresponding to action preconditions and
postconditions.
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problem file.

5. Parses the generated plan into a robot-executable python program that visually grounds action

preconditions and postconditions at runtime.

NL2PDDL2Prog is algorithmically summarized in Alg. 2. The following sections expand on its

individual components.

Algorithm 2 NL2PDDL2Prog
Input: An image of the kitchen img, a PDDL domain file fD, and a natural language instruction t
Output: A robot-executable action plan in the form of a python program

1: O = {I, A,U , C} ← V QA(img) ▷ Object Recognition
2: fProb ← LLM(fDom,O, t) ▷ Problem File Generation
3: fProb ← V AL(fP ) ▷ Problem File Validation
4: fPlan ← A∗ ← FastDownward(fD, fP ) ▷ Planning
5: fpython ← Parser(fPlan) ▷ Parsing
6: return fpython

function Parser
(
A∗, P re(A∗), Post(A∗)

)
7: for a∗i ∈ A∗ do
8: for prei ∈ Pre(a∗i ) do
9: if V QA(prei) then

10: raisePreconditionError(prei)
11: end if
12: end for
13: execute(a∗i )
14: for posti ∈ Post(a∗i ) do
15: if V QA(posti) then
16: raisePostconditionError(posti)
17: end if
18: end for
19: end for
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5.2.2 PDDL Domain

The domain file is the foundation of the PDDL formulation, providing a human-readable model

of the world. It consists of the types of allowable objects in the environment, the action space in the

form of STRIPS-style actions, and the state space in the form of boolean predicates. In our object

taxonomy, the set of available objectsO in the kitchen can be further categorized into separate subsets of

ingredients I, appliances A, utensils U , and containers C. PDDL allows hierarchical object relationships

and property inheritance. This translates to hypernymy or IS-A [109] hierarchical relationships. For

example, a kitchen knife IS-A utensil and a utensil IS-An object, hence the knife inherits all properties of

its parent object types. Our action space consists of some of the most frequent action verbs in the cooking

domain [110]A ={pick up, place, put-in, pour, cut, stir, open, close, turn on, turn

off}modeled as transitions from the predicates that must hold before action execution (preconditions) to

the predicates that hold after the action (postconditions). The predicates include the location of an object

at ?o - object ?l - location, a change of state of an ingredient (sliced or stirred),

and picked-up denoting that an object has been picked up by the robot. is-empty denotes an empty

container or appliance and turned-on, is-open indicates that an appliance has been turned on and is

open, respectively. PDDL additionally supports axioms as a means of manually encoding commonsense

reasoning rules that are not covered by the action definitions. In our domain, placing or pouring an

ingredient i1 onto another ingredient i2 that is already in a container, implies that i1 is also in the same

container.

5.2.3 Visual Question Answering for Object Recognition

To acquire the set of available objects O in the kitchen, we employ a visual question answering

(VQA) method using a VLM [101] capable of handling basic visual queries to recognize objects

belonging to the admissible categories {I, A,U , C}. Instead of using an open-vocabulary object detector

which would assume a priori knowledge of the specific instances of the objects in the current kitchen
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environment [10], we pose a question using the following template “What are the {object category}

in this image?”, where object category is one of the following: {ingredients, appliances,

utensils, containers}. This constrains the domain to a specific set of pre-defined object

categories, but enables the system to recognize unseen objects of these categories in novel scenes.

5.2.4 Problem File Generation

The problem file consists of the instances of the available objects in the environment, the predicates

that hold at the initial state, and the predicates that must hold at plan completion to signal a successful

execution. We assume that the robot is available at the beginning of every plan execution and that the

system has full observability of the state, which implies that all appliances are open and the items in them

are visible without any significant occlusion. To determine the location of an ingredient or utensil we

use the following template “Where is the {object}?”. To determine whether a container or appliance is

empty we use the template “Is the {object} empty?”. Finally, we assume that sliceable ingredients are

not sliced before plan execution. To generate the PDDL problem file, we prompt an LLM with the

domain file, a list of all available objects and their categories, the initial state which corresponds to initial

predicate values expressed in an expanded natural language form, and a natural language instruction.

The main functionality of the LLM is to derive the initial predicates and the goal conditions based on the

domain file and the information extracted through the VQA module. After acquiring the problem file, we

use VAL [8] to syntactically validate it before passing it to the planner.

5.2.5 Plan Generation & Parsing

To generate a plan given the domain and problem specifications, we use Fast Downward1 [108], a

heuristic search-based classical planning system widely used in the LLM-PDDL literature [57–61]. The

planner generates a finite sequence of admissible actions A∗, if there is one, and produces an output

1We use the implementation in https://github.com/aibasel/downward.
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file listing these actions and the specific parameter values used for solving the input planning problem.

Based on the structure of this file, we synthesize a parser that matches the parameter values to lifted

action definitions in the domain file and translates the generated plan into a python program that visually

grounds preconditions Pre(A∗) and effects Post(A∗). An action is only executed if all preconditions

are satisfied. This is achieved by nested conditional statements that query the VQA module with question

templates corresponding to each predicate. If any of these preconditions does not hold, an exception is

raised informing the user about the specific source of failure. Postconditions are similarly handled with

conditional statements after action execution, halting program execution and displaying the error source

if any of them is not satisfied. The parser is algorithmically summarized in Alg. 2.

5.3 Proposed Evaluation

5.3.1 Experiment Design

To evaluate NL2PDDL2Prog, we plan to investigate the performance of its individual components

and analyze its functionality as an end-to-end system. We will begin by evaluating the VQA module.

This is an essential part of the system used to acquire the initial list of objects in the kitchen and validate

predicates corresponding to the preconditions and postconditions between and after every action in the

generated plan. We plan to generate a set of images from simulated kitchen environments in AI2-

THOR [7] and consider a set of images depicting real kitchens taken from the internet. The images will

demonstrate different kitchen configurations corresponding to potential states based on the predicates in

the domain file. We expect the VQA module to produce more accurate results on real kitchens, due to

superior image quality and assuming a significantly higher exposure of the model to real images during

pre-training. Additionally, we expect better performance when a smaller set of objects are present in the

scene, compared to cluttered settings. For a quantitative evaluation we will compare the performance a

set of top-performing open-source VLMs capable of handling basic visual queries, LLaVa [111], BLIP-
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2 [101], and the proprietary GPT-4o [112].

Our next step is going to evaluate the ability of the LLM to combine a natural language instruction,

a domain file, and a list of detected objects into producing a valid goal specification in the form of a PDDL

problem file. We plan to investigate the performance of zero-shot, one-shot, and two-shot prompts. The

numbers correspond to the number of example problem files included in the input prompt to bias the

answer structure of the model towards producing programs of a similar pattern. We intend to measure

the ratio of correct generated goal conditions compared to a ground truth problem file that we manually

create based on the goal conditions of a recipe. We consider a goal condition incorrect if the action or

any of its parameter values does not exactly match the respective condition in the ground truth file.

Finally, we aim to evaluate NL2PDDL2Prog as a planning system, comparing the output plan to

the plan generated by an end-to-end LLM planner. The goal of this evaluation is to investigate whether

the use of PDDL as an interface in LLM planning can produce more robust action plans for executing

recipes in the kitchen. We will compare our system with an LLM prompted with the available objects,

actions, a natural language instruction, and example output plans, and we will measure the executability

and correctness of the plans. Executability is measured as the fraction of the generated actions that are

admissible in the environment and correctness counts the fraction of generated actions that are also part

of a ground truth plan. We formalize these insights into the following questions:

Q1: Is PDDL as an interface better than end-to-end LLM planning?

Q2: How accurate is the predicate grounding module?

Q3: What are the benefits of the visually grounded action programs?
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Appendix B: Timeline for Research Completion

The work [4] in Chapter 3 has been published at the 2024 IEEE International Conference on

Robotics and Automation (ICRA 2024) and presented in Yokohama, Japan in May 2024. The work [24]

in Chapter 4 is under review at the 2025 IEEE International Conference on Robotics and Automation

(ICRA 2025) and was accepted and presented as a poster at ICRA@40, the 40th Anniversary of the IEEE

International Conference on Robotics and Automation (ICRA) in Rotterdam, Netherlands in September

2024.

We plan to complete the research idea described in Chapter 5, perform real-robot experiments by

the end of the year, and submit it to the IEEE Robotics and Automation Letters (RA-L, reviewed on a

rolling basis) journal. In terms of future work, we plan to submit two conference papers to the 2025

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025, deadline: March

2025) and the 2025 Conference on Robot Learning 2025 (CoRL 2025, deadline: June 2025), respectively,

and hold the dissertation defense in the Summer of 2025.

54



Bibliography

[1] Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus. Interpreting
and executing recipes with a cooking robot. In Experimental Robotics: The 13th International
Symposium on Experimental Robotics, pages 481–495. Springer, 2013.

[2] Jonathan Malmaud, Earl Wagner, Nancy Chang, and Kevin Murphy. Cooking with semantics. In
Proceedings of the ACL 2014 Workshop on Semantic Parsing, pages 33–38, 2014.

[3] Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas Demeester, and Chris Develder. Recipe
instruction semantics corpus (RISeC): Resolving semantic structure and zero anaphora in recipes.
In Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics and the International Joint Conference on Natural Language Processing, pages 821–
826, 2020.

[4] Angelos Mavrogiannis, Christoforos Mavrogiannis, and Yiannis Aloimonos. Cook2ltl:
Translating cooking recipes to ltl formulae using large language models, 2023.

[5] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, pages 46–57. ieee, 1977.

[6] Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar
Weber, and Antonio Torralba. Recipe1m+: A dataset for learning cross-modal embeddings for
cooking recipes and food images. IEEE Trans. Pattern Anal. Mach. Intell., 2019.

[7] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-THOR: An interactive 3d environment
for visual AI. arXiv preprint arXiv:1712.05474, 2017.

[8] Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In 16th IEEE International Conference on Tools with
Artificial Intelligence, pages 294–301. IEEE, 2004.

[9] Drew M McDermott. The 1998 ai planning systems competition. AI magazine, 21(2):35–35, 2000.

[10] Keisuke Shirai, Cristian C Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto, Shohei
Tanaka, Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku, and Shinsuke Mori. Vision-
language interpreter for robot task planning. In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pages 2051–2058. IEEE, 2024.

55



[11] James J Gibson. The ecological approach to visual perception: classic edition. Psychology press,
2014.

[12] Devi Parikh and Kristen Grauman. Relative attributes. In 2011 International Conference on
Computer Vision, pages 503–510. IEEE, 2011.

[13] John Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, pages 10–32,
1957.

[14] Xiaohan Zhang, Saeid Amiri, Jivko Sinapov, Jesse Thomason, Peter Stone, and Shiqi Zhang.
Multimodal embodied attribute learning by robots for object-centric action policies. Autonomous
Robots, pages 1–24, 2023.

[15] Khoi Pham, Kushal Kafle, Zhe Lin, Zhihong Ding, Scott Cohen, Quan Tran, and Abhinav
Shrivastava. Learning to predict visual attributes in the wild. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 13018–13028, 2021.

[16] Maria A Bravo, Sudhanshu Mittal, Simon Ging, and Thomas Brox. Open-vocabulary attribute
detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7041–7050, 2023.

[17] Keyan Chen, Xiaolong Jiang, Yao Hu, Xu Tang, Yan Gao, Jianqi Chen, and Weidi Xie.
Ovarnet: Towards open-vocabulary object attribute recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 23518–23527, 2023.

[18] Xiaoyuan Guo, Kezhen Chen, Jinmeng Rao, Yawen Zhang, Baochen Sun, and Jie Yang. Lowa:
Localize objects in the wild with attributes. In R0-FoMo: Robustness of Few-shot and Zero-shot
Learning in Large Foundation Models, 2023.

[19] Gyan Tatiya, Jonathan Francis, Ho-Hsiang Wu, Yonatan Bisk, and Jivko Sinapov. Mosaic:
Learning unified multi-sensory object property representations for robot perception. arXiv preprint
arXiv:2309.08508, 2023.

[20] Lorenzo Bianchi, Fabio Carrara, Nicola Messina, Claudio Gennaro, and Fabrizio Falchi. The
devil is in the fine-grained details: Evaluating open-vocabulary object detectors for fine-grained
understanding. arXiv preprint arXiv:2311.17518, 2023.

[21] Olga Russakovsky and Li Fei-Fei. Attribute learning in large-scale datasets. In Trends and Topics
in Computer Vision: ECCV 2010 Workshops, Heraklion, Crete, Greece, September 10-11, 2010,
Revised Selected Papers, Part I 11, pages 1–14. Springer, 2012.

56



[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

[23] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task
plans using large language models. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 11523–11530. IEEE, 2023.

[24] Angelos Mavrogiannis, Dehao Yuan, and Yiannis Aloimonos. Discovering object attributes by
prompting large language models with perception-action apis, 2024. URL https://arxiv.
org/abs/2409.15505.

[25] The ”Poetics” of Everyday Life: Grounding Resources and Mechanisms for Artificial Agents.
https://cordis.europa.eu/project/id/215843. Accessed: 2023-09-28.

[26] Yezhou Yang, Yi Li, Cornelia Fermuller, and Yiannis Aloimonos. Robot learning manipulation
action plans by” watching” unconstrained videos from the world wide web. In Proceedings of the
AAAI conference on artificial intelligence, volume 29, 2015.

[27] Katerina Pastra and Yiannis Aloimonos. The minimalist grammar of action. Philosophical
Transactions of the Royal Society B: Biological Sciences, 367(1585):103–117, 2012.

[28] Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mösenlechner, Dejan
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[90] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

[91] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[92] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
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