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1. Introduction 
While manipulating objects in activities of daily living, we come across a problem where objects 
are quite often severely occluded from the egocentric viewpoint making it difficult for the object 
of interest to be tracked. Most of the current approaches rely heavily on either the visual cues of 
the object of interest or its prior shape or both. While these approaches perform extremely well 
for low level of occlusion or mild occlusion, given enough data for object’s prior shape, the 
dependency of these methods on visual cues and object priors creates a big challenge while 
dealing with objects under severe occlusion or complete occlusion. Our project aims to find out 
whether there exists a correlation between the manipulator pose and the object pose. With our 
approach, we aim to solve the problem of tracking severely occluded objects solely based on the 
manipulator pose. 
 
2. Related Work 
One of the approaches [1] proposes a spatial-temporal memory network (STMN) for video 
object detection which considers objects under low to severe occlusion. It uses recurrent 
computational unit to integrated pre-trained image classification weights in memory and in-
network alignment module that spatially aligns the memory across time. This approach relies on 
the visual cues of the object from the past frames in sequence to estimate the object pose in 
current frame. This can be very useful even for severely occluded images given there is enough 
temporal information of the object and the object is occluded only for short temporal instances. 
However, the fact that it heavily relies on the temporal data severely limits its applicability for 
the cases where the object of interest is occluded for longer instances or when there is not 
enough temporal data of the object. 
 
Another approach [2] implements a deep learning network framework that combines tubelet 
proposal generation and temporal classification with visual-temporal object cues. The algorithm 
captures the spatiotemporal locations of the object in videos and uses temporal CNN long short-
term memory (LSTM) model in order to classify the tubelet proposals with both spatial and 
temporal features. This object motion model can be used to extrapolate the object pose at an 
occluded instance. This approach takes longer spatial-temporal feature into consideration, 
however, still heavily relies in the unoccluded visual cues of the object at a different segment of 
temporal instances. 
 
Another approach described in [3] is based on shape-based template matching, which can be 
applied on isolated objects as well as objects in cluttered images and involves shape 
representation and estimation of similarity between the object pairs. This approach requires a 
prior of the object’s shape for all possible orientations and generates a template for the object. It 
then generates a similar model of the visual cues of the object at an occluded instance and tries to 
match the shape of the object at a low-level gradient without extracting contours. While this 
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approach works well even with untextured object under occlusion, it still performs poorly for 
occlusion that is greater than 35%. 
 
Our key observation was that moving objects or objects of interest in activities of daily living 
under manipulation suffer occlusion because of hand interaction or dexterous manipulation and 
we are interested in finding whether we can use the information from the manipulator, for 
instance hand pose, to estimate the object pose to track the object. Thereof, our project proposes 
an alternative approach where we use only the manipulator pose to estimate the object pose for 
object tracking in severely occluded environments.  
 
3. Problem statement formulation 
3.1 Choosing environment (2D vs 3D) 

While the problem that we are trying to address is present in 2D scenes (since occlusion happens 
due to projection of 3D points from a certain viewpoint), we could not find any 2D dataset 
suitable for our task. Most 2D datasets for object tracking from egocentric viewpoints have only 
object annotations. For tracking occluded objects with hand poses as cues, datasets need to 
contain both hand and object annotations. We only found one dataset relevant for such task. [6] 
However the dataset is significantly small, and this makes it hard to train neural network models 
without overfitting to the seen examples. This poses a new challenging problem of lack of 
annotated data for joint pose and object tracking. We circumvent this problem by choosing a 3D 
simulator, where we perform hand manipulation of different objects. Since, our goal is to reliably 
track pose of an object under dexterous manipulation, being able to do that in a 3D simulated 
environment implies that other than visual cues of the object, hand pose can be used as a 
significant input for tracking objects in 2D egocentric scenes, which was the main motivation for 
this project. 
 
3.2 Problem statement definition 

Now that we have mentioned verbally the problem statement, we are going to define it 
mathematically in this subsection. 
 
Let   denote manipulator poses and object poses at time instant t respectively. Our 
goal is to verify whether these two entities are highly correlated and whether you can estimate 

 from .  
 
One observation we made is that the current pose of the object is dependent on 3 factors: 1) the 
previous position of the object 2) the manipulator joint positions 3) manipulator joint motion. 
Directly estimating  from  can be difficult as that would require severe data 
augmentation for all possible previous poses of the object. Instead we try to estimate the change 
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in the object pose  from the change in the manipulator pose ( ), previous 

configuration of the robot joints  and previous pose of the object . So, the end goal 
is to be able to learn to approximate a regression function  given by 
 

     
 
And the current object pose is estimated by adding the delta to our previous estimate of the 
object pose. Thus, we have formulated our problem as a pose tracking problem. The next section 
is going to describe what the inputs signify physically in the simulator. 
 
4. Experimental Setup 
4.1 Manipulator Arm 

The manipulator arm we decided to use in our simulation is the Shadow Dexterous Hand (Smart 
Motor actuation system version), which incorporates anthropomorphic features in its design and 
gives a very close approximation to the real human hand. It has 24 joints, four of which are 
coupled and hence it can offer 20 actuated degrees of freedom, that can be controlled to  
degree across the full range of movement, and 4 underactuated degrees of freedom. More 
specifically, the thumb has five joints and five degrees of freedom, while each of the other 
fingers has four joints and three degrees of freedom, except for the little finger. The little finger 
has an extra revolute joint on the palm of the hand, which allows opposition to the thumb. 
Finally, the wrist has 2 degrees of freedom, as it can pitch and yaw, as shown in Figure 1. [4] 
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Figure 1: Kinematics diagram of the shadow hand 

 
Some of the anthropomorphic features of the hand are the carefully measured distances between 
the fingertips and the hand knuckles, as well as the design constraint that allows the angle of the 
middle joint of each finger to only be equal or greater than the angle of the distal joint of this 
finger. These characteristics are crucial for making the shadow dexterous hand simulate the 
human hand in a realistic way. 

4.2 Simulation Environment 

As for the simulation software, we decided that the OpenAI Gym would be good for developing 
as well as comparing Reinforcement Learning algorithms. The default simulator, developed by 
OpenAI, initially sets a goal orientation for an egg-shaped object and then controls the shadow 
hand actuators and changes the values of the joint angles during each iteration until the object 
reaches its target orientation as can be seen in Figure 2. [5] 
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Figure 2: Default gym simulator for manipulating an egg-shaped object 

 
We modified the simulator in order to demonstrate the estimation of the pose of the object. The 
estimated pose is represented by the hollow green egg-shaped object in our simulator as shown 
in Figure 3. 
 

 
Figure 3: Our modified simulator that demonstrates the estimated pose of the object 

 
As illustrated in Figure 4., our learning objective is to take a 24-dimensional vector describing 
the joint angles of the manipulator and learn a function in order to estimate the pose of the egg-
shaped object, which is described by a 7-dimensional vector that consists of the 4-dimensional 
quaternion and the position of the object. 
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Figure 4: The learning objective of our method 

5. Experiments 
5.1 Choosing a learning model 

We initially tried to keep the model simple by assuming the function  is a linear regressor or a 
polynomial regressor (up to 5th degree). A large generalization error during test time implied 
that the model was underfitting. So, we finally used a 3-layer MLP with tanh nonlinearity as our 
learnable module. Figure 5. shows the architecture. 
 

 
Figure 5: The architecture of the model 

    
The input to our model is a 55-dimensional vector which is a concatenated vector of manipulator 
pose change, previous manipulator poses, previous object poses. Next there are 2 hidden layers 
each with 500 units and tanh nonlinearity and the final layer has 7 units with no non-linearity 
since it estimates the delta corresponding to object pose. The 7 dimensions correspond to the 3 
positional coordinates in space and the quaternion. 
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5.2 Choosing a loss function 

Our initial set of experiments with an L2 loss saw relatively unstable convergence during 
training time. This can be attributed due to gradient explosion, instead of clipping the gradients 
beyond a certain threshold, we used a smooth L1 loss function. The Smooth L1 loss function is 
piecewise L1 and L2 as shown in Eq. (2) and Figure 6. It is an L1 loss beyond |x| >=1 and L2 
loss in the range |x| < 1. This loss is less susceptible to gradient explosion and converges more 
smoothly for unbounded regression values.  
 

         

 
Figure 6: Smooth L1 loss 

 
We took the original version defined in the Fast RCNN paper [7]. The more generic version of 
the smooth L1 loss is shown in [8]. It uses another term  to account for the unnormalized 
regression values. We use  for all our experiments. 
 
5.3 Choosing an object for manipulation 

As explained in the previous section, we are using the OpenAI gym environment. The simulator 
with the shadow robot arm has manipulation options for 3 different type of objects: cube, 
egg(ellipsoid) and stick [5] as shown in Figure 7&8.  
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Figure 7: Cube and Egg-shaped object manipulation on OpenAI Gym 

 
Figure 8: Manipulation of a pen on OpenAI Gym 

We choose the second one (ellipsoid) because it seemed to be the most representative of generic 
objects under manipulation amongst all the three. Predicting the orientation of the ellipsoid is 
also going to be more challenging than that of the cube since a cube is more likely to be in a 
stable orientation and less likely to roll.  
 
5.4 Choosing manipulation configuration 

We never fully grasp (there is no force closure) the object under manipulation as that is a less 
interesting case. Instead we loosely hold the object under manipulation and make sure that the 
object never really falls off the palm of the manipulator. We bound the initialization constraints 
of the joint angles to make sure the manipulator is holding the object. Next, we run 10,000 
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iterations in each of which we alter the joint angles randomly within a bound of 1 radian. We 
collect the data for a couple of hours with approximately 10 million ordered pairs of manipulator 
poses and object poses. (Our model is trained in a single 1080Ti GPU with a batch size of 128. 
The simplicity of the model enables training within a few hours and gives real-time performance 
during test time on a standard CPU.) 
 
6. Experiments 
6.1 Tracking results (demo) 

We show the tracking results with our method for 5k (Figure 9,10&11) and training 100k (Figure 

12,13&14) iterations respectively. At every time instant ‘t’ we evaluate  from Eq. (1) and 
estimate current object pose as  
 

   
 
 

 
Figure 9: 5k training iterations 

Test time demo at t=10 
Estimated pose (shown in grey ellipsoid) starts to drift 

 

 
Figure 10: 5k training iterations 

Test time demo at t=50 
Estimated pose is way off 
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Figure 11: 5k training iterations 

Test time demo at t=100 
Estimated pose is way off 

 

 
Figure 12: 100k training iterations 

Test time demo at t=10 
Estimated pose overlaps almost completely 

 

 
Figure 13: 100k training iterations 

Test time demo at t=50 
Drift is hard to notice 
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Figure 14: 100k training iterations 

Test time demo at t=100 
Drift is present but negligible 

 

As we can see in the above Figures 9-14, the network learns to track reliably well after 100k 
training iterations. This can be attributed due to the low drift during test time. The following 
graph shows the test time mean squared error for different training checkpoints. 

 
Figure 15: Test time error and drift 

 

As is shown in Figure 15, the error curve becomes more and more flat as the number of training 
iterations increases. Also, to be noted is the fact that with time, for a given checkpoint, the error 
increases. This test time error is the main cause for drift in tracking. This can be explained from 
Eq. (3). Unrolling Eq. (3) in time gives: 
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This means our current estimate of the object pose is the initial object pose + sum of all the 
deltas of object pose predicted over time. During test time, there will always be some 
generalization error and this error will accumulate over time to cause drift. 
 
7. Conclusion and future work 

• With these set of experiments, we show that the hand poses and manipulated object poses 
are highly correlated and we present a learnable module which can estimate the object 
pose solely from the data distribution. 

• Our approach uses a very simple neural network to model this and thus achieves real time 
performance. It takes 62ms on a standard CPU machine compared to the 280ms 
computation time for the simulation update step. 

• However, the main goal of the project is to solve the case for 2D objects, because 
occlusion is the main problem for such datasets. This means when enough visual cues of 
the object are not present, we can use hand poses (may be from pose machines) as 
additional input to any model to track objects more reliably. Next, we present an FQA 
section where we discuss the most probable questions that can arise from our work. 
 

8. FQA 
How to reduce/prevent drift? 

The drift issue is something very fundamental to a tracking problem and it happens due to the 
error accumulation as explained in the results section. It can be reduced with more training but 
cannot be prevented. 
 
Does the model not learn biases for object shapes? 

Yes, it does. OpenAI gym only comes with 3 different object shapes and we took the most 
representative/challenging one for our model. With enough data we can probably pass the shape 
parameters as an input to the function to take this issue into account. 
   
Is the model not just learning forward kinematics? 

No. The model would have learnt forward kinematics if the object was under full grasp, then that 
object could have been treated as an end actuator. But such is not the case when the object is 
loosely held and under dexterous manipulation. 
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