

16-741: Mechanics of Manipulation
Project Report

Object Pose Estimation from Manipulator Pose

Angelos Mavrogiannis (angelosm)
Satyaki Chakraborty (schakra1)

Suman Pokharel (spokhare)

12/10/2018

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

1.

1. Introduction
While manipulating objects in activities of daily living, we come across a problem where objects
are quite often severely occluded from the egocentric viewpoint making it difficult for the object
of interest to be tracked. Most of the current approaches rely heavily on either the visual cues of
the object of interest or its prior shape or both. While these approaches perform extremely well
for low level of occlusion or mild occlusion, given enough data for object’s prior shape, the
dependency of these methods on visual cues and object priors creates a big challenge while
dealing with objects under severe occlusion or complete occlusion. Our project aims to find out
whether there exists a correlation between the manipulator pose and the object pose. With our
approach, we aim to solve the problem of tracking severely occluded objects solely based on the
manipulator pose.

2. Related Work
One of the approaches [1] proposes a spatial-temporal memory network (STMN) for video
object detection which considers objects under low to severe occlusion. It uses recurrent
computational unit to integrated pre-trained image classification weights in memory and in-
network alignment module that spatially aligns the memory across time. This approach relies on
the visual cues of the object from the past frames in sequence to estimate the object pose in
current frame. This can be very useful even for severely occluded images given there is enough
temporal information of the object and the object is occluded only for short temporal instances.
However, the fact that it heavily relies on the temporal data severely limits its applicability for
the cases where the object of interest is occluded for longer instances or when there is not
enough temporal data of the object.

Another approach [2] implements a deep learning network framework that combines tubelet
proposal generation and temporal classification with visual-temporal object cues. The algorithm
captures the spatiotemporal locations of the object in videos and uses temporal CNN long short-
term memory (LSTM) model in order to classify the tubelet proposals with both spatial and
temporal features. This object motion model can be used to extrapolate the object pose at an
occluded instance. This approach takes longer spatial-temporal feature into consideration,
however, still heavily relies in the unoccluded visual cues of the object at a different segment of
temporal instances.

Another approach described in [3] is based on shape-based template matching, which can be
applied on isolated objects as well as objects in cluttered images and involves shape
representation and estimation of similarity between the object pairs. This approach requires a
prior of the object’s shape for all possible orientations and generates a template for the object. It
then generates a similar model of the visual cues of the object at an occluded instance and tries to
match the shape of the object at a low-level gradient without extracting contours. While this

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

2.

approach works well even with untextured object under occlusion, it still performs poorly for
occlusion that is greater than 35%.

Our key observation was that moving objects or objects of interest in activities of daily living
under manipulation suffer occlusion because of hand interaction or dexterous manipulation and
we are interested in finding whether we can use the information from the manipulator, for
instance hand pose, to estimate the object pose to track the object. Thereof, our project proposes
an alternative approach where we use only the manipulator pose to estimate the object pose for
object tracking in severely occluded environments.

3. Problem statement formulation
3.1 Choosing environment (2D vs 3D)

While the problem that we are trying to address is present in 2D scenes (since occlusion happens
due to projection of 3D points from a certain viewpoint), we could not find any 2D dataset
suitable for our task. Most 2D datasets for object tracking from egocentric viewpoints have only
object annotations. For tracking occluded objects with hand poses as cues, datasets need to
contain both hand and object annotations. We only found one dataset relevant for such task. [6]
However the dataset is significantly small, and this makes it hard to train neural network models
without overfitting to the seen examples. This poses a new challenging problem of lack of
annotated data for joint pose and object tracking. We circumvent this problem by choosing a 3D
simulator, where we perform hand manipulation of different objects. Since, our goal is to reliably
track pose of an object under dexterous manipulation, being able to do that in a 3D simulated
environment implies that other than visual cues of the object, hand pose can be used as a
significant input for tracking objects in 2D egocentric scenes, which was the main motivation for
this project.

3.2 Problem statement definition

Now that we have mentioned verbally the problem statement, we are going to define it
mathematically in this subsection.

Let denote manipulator poses and object poses at time instant t respectively. Our
goal is to verify whether these two entities are highly correlated and whether you can estimate

 from .

One observation we made is that the current pose of the object is dependent on 3 factors: 1) the
previous position of the object 2) the manipulator joint positions 3) manipulator joint motion.
Directly estimating from can be difficult as that would require severe data
augmentation for all possible previous poses of the object. Instead we try to estimate the change

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

3.

in the object pose from the change in the manipulator pose (), previous

configuration of the robot joints and previous pose of the object . So, the end goal
is to be able to learn to approximate a regression function given by

And the current object pose is estimated by adding the delta to our previous estimate of the
object pose. Thus, we have formulated our problem as a pose tracking problem. The next section
is going to describe what the inputs signify physically in the simulator.

4. Experimental Setup
4.1 Manipulator Arm

The manipulator arm we decided to use in our simulation is the Shadow Dexterous Hand (Smart
Motor actuation system version), which incorporates anthropomorphic features in its design and
gives a very close approximation to the real human hand. It has 24 joints, four of which are
coupled and hence it can offer 20 actuated degrees of freedom, that can be controlled to
degree across the full range of movement, and 4 underactuated degrees of freedom. More
specifically, the thumb has five joints and five degrees of freedom, while each of the other
fingers has four joints and three degrees of freedom, except for the little finger. The little finger
has an extra revolute joint on the palm of the hand, which allows opposition to the thumb.
Finally, the wrist has 2 degrees of freedom, as it can pitch and yaw, as shown in Figure 1. [4]

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

4.

Figure 1: Kinematics diagram of the shadow hand

Some of the anthropomorphic features of the hand are the carefully measured distances between
the fingertips and the hand knuckles, as well as the design constraint that allows the angle of the
middle joint of each finger to only be equal or greater than the angle of the distal joint of this
finger. These characteristics are crucial for making the shadow dexterous hand simulate the
human hand in a realistic way.

4.2 Simulation Environment

As for the simulation software, we decided that the OpenAI Gym would be good for developing
as well as comparing Reinforcement Learning algorithms. The default simulator, developed by
OpenAI, initially sets a goal orientation for an egg-shaped object and then controls the shadow
hand actuators and changes the values of the joint angles during each iteration until the object
reaches its target orientation as can be seen in Figure 2. [5]

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

5.

Figure 2: Default gym simulator for manipulating an egg-shaped object

We modified the simulator in order to demonstrate the estimation of the pose of the object. The
estimated pose is represented by the hollow green egg-shaped object in our simulator as shown
in Figure 3.

Figure 3: Our modified simulator that demonstrates the estimated pose of the object

As illustrated in Figure 4., our learning objective is to take a 24-dimensional vector describing
the joint angles of the manipulator and learn a function in order to estimate the pose of the egg-
shaped object, which is described by a 7-dimensional vector that consists of the 4-dimensional
quaternion and the position of the object.

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

6.

Figure 4: The learning objective of our method

5. Experiments
5.1 Choosing a learning model

We initially tried to keep the model simple by assuming the function is a linear regressor or a
polynomial regressor (up to 5th degree). A large generalization error during test time implied
that the model was underfitting. So, we finally used a 3-layer MLP with tanh nonlinearity as our
learnable module. Figure 5. shows the architecture.

Figure 5: The architecture of the model

The input to our model is a 55-dimensional vector which is a concatenated vector of manipulator
pose change, previous manipulator poses, previous object poses. Next there are 2 hidden layers
each with 500 units and tanh nonlinearity and the final layer has 7 units with no non-linearity
since it estimates the delta corresponding to object pose. The 7 dimensions correspond to the 3
positional coordinates in space and the quaternion.

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

7.

5.2 Choosing a loss function

Our initial set of experiments with an L2 loss saw relatively unstable convergence during
training time. This can be attributed due to gradient explosion, instead of clipping the gradients
beyond a certain threshold, we used a smooth L1 loss function. The Smooth L1 loss function is
piecewise L1 and L2 as shown in Eq. (2) and Figure 6. It is an L1 loss beyond |x| >=1 and L2
loss in the range |x| < 1. This loss is less susceptible to gradient explosion and converges more
smoothly for unbounded regression values.

Figure 6: Smooth L1 loss

We took the original version defined in the Fast RCNN paper [7]. The more generic version of
the smooth L1 loss is shown in [8]. It uses another term to account for the unnormalized
regression values. We use for all our experiments.

5.3 Choosing an object for manipulation

As explained in the previous section, we are using the OpenAI gym environment. The simulator
with the shadow robot arm has manipulation options for 3 different type of objects: cube,
egg(ellipsoid) and stick [5] as shown in Figure 7&8.

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

8.

Figure 7: Cube and Egg-shaped object manipulation on OpenAI Gym

Figure 8: Manipulation of a pen on OpenAI Gym

We choose the second one (ellipsoid) because it seemed to be the most representative of generic
objects under manipulation amongst all the three. Predicting the orientation of the ellipsoid is
also going to be more challenging than that of the cube since a cube is more likely to be in a
stable orientation and less likely to roll.

5.4 Choosing manipulation configuration

We never fully grasp (there is no force closure) the object under manipulation as that is a less
interesting case. Instead we loosely hold the object under manipulation and make sure that the
object never really falls off the palm of the manipulator. We bound the initialization constraints
of the joint angles to make sure the manipulator is holding the object. Next, we run 10,000

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

9.

iterations in each of which we alter the joint angles randomly within a bound of 1 radian. We
collect the data for a couple of hours with approximately 10 million ordered pairs of manipulator
poses and object poses. (Our model is trained in a single 1080Ti GPU with a batch size of 128.
The simplicity of the model enables training within a few hours and gives real-time performance
during test time on a standard CPU.)

6. Experiments
6.1 Tracking results (demo)

We show the tracking results with our method for 5k (Figure 9,10&11) and training 100k (Figure

12,13&14) iterations respectively. At every time instant ‘t’ we evaluate from Eq. (1) and
estimate current object pose as

Figure 9: 5k training iterations

Test time demo at t=10
Estimated pose (shown in grey ellipsoid) starts to drift

Figure 10: 5k training iterations

Test time demo at t=50
Estimated pose is way off

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

10.

Figure 11: 5k training iterations

Test time demo at t=100
Estimated pose is way off

Figure 12: 100k training iterations

Test time demo at t=10
Estimated pose overlaps almost completely

Figure 13: 100k training iterations

Test time demo at t=50
Drift is hard to notice

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

11.

Figure 14: 100k training iterations

Test time demo at t=100
Drift is present but negligible

As we can see in the above Figures 9-14, the network learns to track reliably well after 100k
training iterations. This can be attributed due to the low drift during test time. The following
graph shows the test time mean squared error for different training checkpoints.

Figure 15: Test time error and drift

As is shown in Figure 15, the error curve becomes more and more flat as the number of training
iterations increases. Also, to be noted is the fact that with time, for a given checkpoint, the error
increases. This test time error is the main cause for drift in tracking. This can be explained from
Eq. (3). Unrolling Eq. (3) in time gives:

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

12.

This means our current estimate of the object pose is the initial object pose + sum of all the
deltas of object pose predicted over time. During test time, there will always be some
generalization error and this error will accumulate over time to cause drift.

7. Conclusion and future work

• With these set of experiments, we show that the hand poses and manipulated object poses
are highly correlated and we present a learnable module which can estimate the object
pose solely from the data distribution.

• Our approach uses a very simple neural network to model this and thus achieves real time
performance. It takes 62ms on a standard CPU machine compared to the 280ms
computation time for the simulation update step.

• However, the main goal of the project is to solve the case for 2D objects, because
occlusion is the main problem for such datasets. This means when enough visual cues of
the object are not present, we can use hand poses (may be from pose machines) as
additional input to any model to track objects more reliably. Next, we present an FQA
section where we discuss the most probable questions that can arise from our work.

8. FQA
How to reduce/prevent drift?

The drift issue is something very fundamental to a tracking problem and it happens due to the
error accumulation as explained in the results section. It can be reduced with more training but
cannot be prevented.

Does the model not learn biases for object shapes?

Yes, it does. OpenAI gym only comes with 3 different object shapes and we took the most
representative/challenging one for our model. With enough data we can probably pass the shape
parameters as an input to the function to take this issue into account.

Is the model not just learning forward kinematics?

No. The model would have learnt forward kinematics if the object was under full grasp, then that
object could have been treated as an end actuator. But such is not the case when the object is
loosely held and under dexterous manipulation.

16-741: Mechanics of Manipulation Object Pose Estimation from Manipulator Pose

13.

References
[1] Xiao, Fanyi, and Yong Jae Lee. "Video Object Detection with an Aligned Spatial-Temporal Memory."

Proceedings of the European Conference on Computer Vision (ECCV). 2018.

[2] Kang, Kai, et al. "Object detection in videos with tubelet proposal networks." Proc. CVPR. Vol. 2. No. 6. 2017.

[3] Hsiao, Edward, and Martial Hebert. "Gradient Networks: Explicit Shape Matching Without Extracting Edges."

AAAI. 2013.

[4] Walker, R. "Shadow dextrous hand technical specification." Shadow Robot Company (2005).

[5] https://gym.openai.com/envs/#robotics

[6]Sridhar, Srinath, et al. "Real-time joint tracking of a hand manipulating an object from rgb-d input." European

Conference on Computer Vision. Springer, Cham, 2016.

[7] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international conference on computer vision. 2015.

[8] https://github.com/rbgirshick/py-faster-rcnn/files/764206/SmoothL1Loss.1.pdf

https://gym.openai.com/envs/#robotics
https://github.com/rbgirshick/py-faster-rcnn/files/764206/SmoothL1Loss.1.pdf

	1. Introduction
	2. Related Work
	4.2 Simulation Environment

