
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

VR RT2: VR-Integrated Real-Time RaceTrack Simulator
Angelos Mavrogiannis
University of Maryland
College Park, MD, USA
angelosm@cs.umd.edu

Zining Zhang
University of Maryland
College Park, MD, USA
znzhang@cs.umd.edu

Logan Stevens
University of Maryland
College Park, MD, USA
lsteven7@umd.edu

Elliot Huang
University of Maryland
College Park, MD, USA
ehuang12@umd.edu

Hyekang Kevin Joo
University of Maryland
College Park, MD, USA
hkjoo@cs.umd.edu

Figure 1: VR RT2 experiment setup

ABSTRACT
In this paper, we present an interactive system that converts a
physical racetrack to a VR-simulated racing environment. The user
begins by constructing a physical racetrack using a set of 3D-printed
track pieces on a 3D-printed baseboard that resembles a chessboard.
A top-down view of the 2D design of the track is captured in real
time with an overhead camera. The track pieces are segments of
straight or curved lines to model a straight part of a road or a turn,
and the user can incorporate additional functionalities upon some
of these pieces, triggering different functions in the corresponding
parts of the simulated environment (e.g. acceleration or deceleration
of the vehicle). Each of the pieces has an ArUco marker glued on
its center, which is detected from the captured video stream. By
extracting the coordinates and marker id of each of the markers
we compute their relative position and orientation and create an
occupancy grid representation of the physical map in a matrix form

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

which is saved to a text file at every frame. The text file is then
processed and decoded in a real-time Unity environment which
renders the virtual racetrack with a game engine.

KEYWORDS
human computer interaction, computer vision, 3d printing, simula-
tion, virtual reality
ACM Reference Format:
AngelosMavrogiannis, Zining Zhang, Logan Stevens, Elliot Huang, andHyekang
Kevin Joo. 2018. VR RT2: VR-Integrated Real-Time RaceTrack Simulator. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The main idea of this project is to transfer a physical racetrack
to a digital representation in a virtual reality (VR) simulated envi-
ronment where an ego vehicle can be controlled by the main user.
This concept can either be interpreted as a game, where the user
navigates through the track with the goal of achieving a minimum
lap time or as a platform for testing (autonomous) driving-related
algorithms in custom-designed tracks. Our initial plan involved
drawing a racetrack on paper or on a whiteboard but we advanced
our idea to incorporate some hardware components that we could
design and manufacture ourselves. Our approach is presented in
the form of a game, where the user constructs a physical map by

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Mavrogiannis-Zhang-Stevens-Huang-Joo

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

arranging a set of 3D-printed square pieces that represent road seg-
ments on a 3D-printed base that resembles a chessboard. Some of
the pieces incorporate additional functionality by triggering special
effects (attributes) in the simulation, like accelerating or deceler-
ating the ego vehicle for specific parts of the simulated racetrack.
These special pieces are color coded so that the user can distinguish
them from the rest of the normal pieces.

2 RELATEDWORK
The key inspiration for this work can be attributed to theMazeDraw
project [1]. In Maze Draw, the user draws a maze on a whiteboard
with a marker and then using an HD camera and OpenCV, the
physical drawing is converted to a digital drawing, which is then
adapted to a 3D-simulated maze in Unity that the user can navigate
through using an Oculus Rift headset. The computer vision part
is implemented as a color-based line segmentation, given that the
user has access to a colored marker and a whiteboard. Our project
is very similar to MazeDraw, however, instead of drawing lines we
are using 3D-printed pieces and we attach an ArUco marker on
each piece to track each piece in real time. Furthermore, instead
of a maze environment, we focus on a more complicated racetrack
environment consisting of straight lines and turns of multiple sizes.
Mario Kart Live: Home Circuit [3] is another relevant product.
This is a Nintendo Switch game where users can set up and create
custom environments in their own house by arranging various
obstacles or landmarks with computer vision-recognizable patterns
on them, and then drive a MarioKart in a simulated environment
that is an enhanced version of their house. At the same time, a real
kart is also being controlled in the real-world environment (house
map). The landmarks have unique functions that trigger special
effects (attributes) in the game, just like our acceleration-varying
color-coded pieces.

3 SYSTEM OVERVIEW
Figure 2 shows the VR RT2 system architecture, which is composed
of a physical racetrack kit with a map baseboard and multiple track
pieces that provide physical interaction for users, an HD webcam
that captures real-time racetrack design on the baseboard, and a
Unity game engine that can simultaneously render the racetrack
design in virtual reality.

Figure 2: VR RT2 system architecture

3.1 Hardware
When designing a system of pieces that can form various race tracks,
we first started in 2D and then moved to the 3D environment to
refine and optimize the models for 3D printing. Our main goal was
to use as few unique pieces as possible to create as many different
tracks as possible in a fixed-size canvas.

3.1.1 2D design. After plenty of research and multiple iterations
of design and prototyping, the final track design has three types of
unique pieces (Figure 3) for track building–a one-unit-size straight
line piece, a one-unit-size 90° curve piece, and a two-unit-size 90°
curve piece. These three unique pieces can enable almost limitless
track design, and at the same time, prevent user confusion. The
main idea behind our design is modularity; for instance, the user
can connect two curve pieces to represent a 180° curve. The track
below, on the right, is an example of a race track formed by our
three-piece system.

Figure 3: 2D track pieces design

3.1.2 3D design. Based on theWebcam resolution and Ergonomics,
the dimension of the one-unit-size piece is designed to be 20 mm x
20 mm, and accordingly, the two-unit-side piece is settled to be 40
mm x 40 mm. To better improve user experience, a grid baseboard
for easy alignment is added to the system. In this way, the users
no longer need to carefully align and put pieces together; instead,
they can just put the pieces on the grid baseboard and the pieces
will always align perfectly. Due to the ArUco markers used for
piece detection, a placeholder for the ArUco marker of each piece
is designed at the center of each 3D model (Figure 4).

Figure 4: baseboard and track pieces 3D modeling

3.1.3 Fabrication & Assembly. As shown in Figure 5, we used an
FDM 3D printer with PLA filament to fast print the baseboard and
3D track piece models. Each ArUco marker is later attached to
the placeholder of each piece by using hot glue. Furthermore, To
better visually differentiate the functionality of each piece (i.e. none,
acceleration, and deceleration), we applied a color-coded method
to the physical pieces.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

VR RT2 : VR-Integrated Real-Time RaceTrack Simulator Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 5: 3D printed baseboard and track pieces

3.2 Computer Vision
3.2.1 Marker Detection & Identification. We generate a total of 26
ArUco markers using the 5 × 5 ArUco dictionary. The marker with
𝐼𝐷 = 25 is glued at the top left corner of the board and serves as a
reference marker, enabling us to compute the relative distances of
all the other markers that are placed on the board with respect to
the coordinates of this marker. The rest of the markers are divided
into straight line segments (𝐼𝐷𝑠 1 to 14), small turns (𝐼𝐷𝑠 15 to 19),
and large turns (𝐼𝐷𝑠 20 to 24). We generate and detect the markers
using the ArUco module of the OpenCV library and extract the
coordinates of the four corners of each marker for every frame of
the input video stream. The figure shows the detected markers for
a sample configuration, along with their centers and approximated
contours.

3.2.2 Orientation. Having acquired the coordinates of the four
corners of each marker placed on the board, we can easily compute
the coordinates of the point in the center of each marker as well
as its orientation. Given the geometry of the board and assuming
that i) the camera will always be placed on top of it capturing
bird’s eye view images, and ii) the board will always be placed in
an orientation where the reference marker (𝐼𝐷 = 25) lies on its
top left corner, there are only four possible different orientations
for a marker: {0◦, 90◦, 180◦, 270◦} where each of these numbers
represents a potential clockwise rotation of the marker with respect
to its original orientation as extracted from the ArUco dictionary.
The detectMarkers function returns the detected corner coordinates
for every marker in an ordered form and we leverage it to easily
compute the orientation. For example, as we can see in Figure 7 if
the top left horizontal coordinate (𝑇𝐿𝑥) is larger than the bottom
left horizontal coordinate (𝐵𝐿𝑥), then the piece has an orientation
of 90◦. If the difference is smaller than a small user-defined margin
𝜖 number of pixels (𝜖 = 10), then we compare a different set of
points, as it will lead to an incorrect orientation because of noisy
measurements returned from the detection. For example, if we did
not consider this margin, and 𝑇𝐿𝑥 = 100, 𝐵𝐿𝑥 = 99 yielding 𝑇𝐿𝑥 >

𝐵𝐿𝑥 , but in reality the true orientation was 180◦, we would get an

Figure 6: The output of the ArUco marker detection part
using an image captured with our mounted camera, showing
a sample board configuration.

Figure 7: The four different orientations that each square
ArUco marker can have. Each successive pose is a clockwise
rotation about 90 degrees with respect to the previous (left)
pose.

incorrect classification as 90◦. Finally, we do not glue the markers
following their original, unrotated orientation on the pieces, but we
set an orientation notation followed by the straight line and turn
pieces when saving orientation information to file at the end of
the computer vision pipeline. This notation can be seen in Figure 8.
Computationally, we convert the orientation of every piece to one
of these integer numbers by first computing the difference between
the real-time-tracked orientation and the original orientation in
the ArUco dictionary.

3.3 Occupancy Grid Map
Generating a simulated racetrack in Unity that accurately replicates
the physical racetrack on the board heavily relies on the accurate
tracking of themarkers’ relative position and their absolute position
on a 10 × 10 grid. An easy brute-force solution would be to assign
grid coordinates to a piece based on its absolute distance to the top
left corner of the image or to the reference marker. For example,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Mavrogiannis-Zhang-Stevens-Huang-Joo

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 8: The orientation legend used when saving the orien-
tation information to a text file.

we could measure the size 𝑠 of a piece in the image space and if
e.g. a marker’s horizontal coordinate 𝑥 lies within 0 and 𝑠 from
the reference marker, assign the coordinate 1 to it (first block).
However, this approach would not work if we decided to change
the distance of the camera to the board, or if a user accidentally
moved the camera. Tomake the systemmore robust and invariant to
camera motion, we compute the pairwise distances between small
pieces, between small and large pieces, and between large pieces,
when a pair of pieces is placed in adjacent blocks. These pairwise
distances are different for different camera poses, but we established
an invariant relationship between these pairwise distances and the
easily detectable top left marker center, which is a fixed point. More
specifically, if 𝑑 is the pairwise distance between two small pieces,
we tested and confirmed that for a detected piece with 𝐼𝐷 = 𝑖 the
quotient of the division (𝑥𝑖 − 𝑥25)/𝑑 (where 𝑥25 is the horizontal
pixel coordinate of the reference marker with 𝐼𝐷 = 25) yields the
exact grid coordinate (starting from 0) of the piece in the 𝑥 direction
(the same is true for the𝑦 direction). To extract the pairwise distance
between two small pieces, the map needs to have at least two small
pieces placed in adjacent blocks. If there are only large pieces or
the small pieces are not placed in adjacent blocks, then we compute
the large-to-small or large-to-large pairwise distance and compute
the small pairwise distance using an invariant ratio connecting the
sizes of the pieces, which has been computed offline.

3.3.1 Real-time Output Production. Once we are done with ori-
entation and occupancy grid computation, we save the position
and orientation information in two text files respectively, both in
an occupancy grid matrix form. The first text file incorporates the
location and ID information of the track pieces in a 2D array format,
split by space or newline to denote separability. In the other file, we
store the information about the orientation of the piece correspond-
ing to the location. The following position (𝑃) and orientation (𝑂)
matrices show the exact output produced when we encounter the
configuration seen in Figure 6:

𝑃 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 15 1 13 16 0 0 0 0
0 0 23 23 0 10 0 0 0 0
0 0 23 23 5 18 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



𝑂 =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 2 1 1 3 0 0 0 0
0 0 1 1 0 2 0 0 0 0
0 0 1 1 1 4 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


To allow real-time human-computer interaction in the simulated

environment, we design the system so that the output is produced
at every frame of the video stream to constantly keep the racetrack
updated at any time. This allows to make dynamic changes on the
physical racetrack which are immediately reflected to the simulated
track in Unity. For example, if we remove a piece from the track,
then Unity shows a green-colored area in this part of the track
which indicates that this spot does not represent a part of the road
(the road is represented with gray to model the asphalt).

3.4 Game Engine
3.4.1 Rendering. The VR simulation runs on the Unity game en-
gine and uses publicly available assets and experimental first-party
Unity XR software [4] to deliver a simulation that can be used
in conjunction with a Google Cardboard-like smartphone-reliant
viewing interface and an Xbox game controller. Each grid piece on
the baseboard grid is replicated on the surface of the Virtual Envi-
ronment (VE) via strategically placed custom Unity GameObjects
that activate/deactivate and move/rotate according to the output
data from the Computer Vision (CV) (See Figure 9). Our custom C#
scripts in Unity have a parser that reads from the text files that are
output from the CV system in real-time (those text files being the
matrices (𝑃) and (𝑂)) [2]. To extract the proper virtual track mod-
els for the simulation to render on the virtual baseboard, the only
pieces of data needed from the CV system are the ID of each present
piece along with their physical grid location and orientation angle.
From the ID number of the piece, the track model (e.g., straight,
curved, etc.) and its attribute can be extracted. From the location
of the ID within the given matrix (𝑃), the Cartesian coordinates of
that piece can be extracted. Finally, the data from (𝑂) is extracted
and each orientation angle present is applied to each virtual piece
existing at the Cartesian coordinates of each extracted angle in (𝑂).

3.4.2 Game and Control Aspects. One of the track pieces that must
be somewhere on the board for the player to operate the ego ve-
hicle fully is the finish-line track piece. This is where the user can

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

VR RT2 : VR-Integrated Real-Time RaceTrack Simulator Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 9: Top-down view of the racetrack as seen in the Unity
editor.

Figure 10: User view of the simulation.

spawn/re-spawn their vehicle to at any given time via a button
press. The vehicle model in the simulation is a free vehicle Unity
asset [5]. Our VE also uses 3D models from a free modular racetrack
Unity asset [6]. Custom control interface scripts were written in
the C# programming language to handle user input from either
controller or keyboard input [2].

3.4.3 Virtual Reality. VR is achieved through the use of the Unity
Mock HMD XR Plugin [4]. This plugin provides stereo rendering
support by mimicking the display properties of an HTC Vive Head
Mounted Display (HMD) (See Figure 10). While intended to aid in
VR development by circumventing the need for a dedicated HMD,
this mimicking property of the plugin is an easy way to provide
smartphone VR support, which greatly increases the accessibility
of this software.

Figure 11: Top-down view of the board used for homography
estimation

4 CONCLUSION, LIMITATIONS & FUTURE
WORK

We designed and built a 3D-printed board with 3D-printed pieces
to represent a physical racetrack and proposed an approach to con-
vert it to a digital racetrack in Unity and control an ego vehicle to
navigate in an exact replica of the physical environment. Our ap-
proach has some limitations. In terms of the hardware part, there is
only one-way communication from the physical map to the virtual
environment but the system lack feedback from virtual reality to
the physical component. In the future, to achieve two-way commu-
nication, a laser projector can be mounted aside from the Webcam
for projecting the current location of the virtual vehicle on the map.
In terms of the VR simulation aspect, there is no first-person view
from a driver’s perspective. Implementing the feature necessitates
an accessible high-quality Unity-compatible 3D model and addi-
tional custom interaction features. In terms of the computer vision
part, the board needs to be in a room with adequate light for the
detection to work properly. Furthermore, the approach would not
currently work if the camera was totally dismounted and placed
far away from the board. To make this robust, we would need to
estimate the homography between the frame captured from far
away from the board and a top-down frame of the board. We would
need four well-spread points in the two images for a high-quality
homography, so the four corners of the reference marker are not
enough, since they are very close to each other. Hence, we tried to
approximate the coordinates of the board corners using edge and
corner detection, Hough line detection, and color segmentation,
but due to the variable light conditions and the background color
of the board not being very far in the RGB color scale, the board
segmentation did not exhibit consistent behavior. Using a black
color for the board would facilitate edge detection and allow us
to easily segment the board and compute its corner coordinates
for the homography. The currently supported function requires
the user to manually select the four corners of the board using the
mouse cursor on the new frame. The results for the homography
are shown in Figures 11, 12, and 13.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Mavrogiannis-Zhang-Stevens-Huang-Joo

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 12: Picture of the board taken from a different distance
and angle

Figure 13: Transformed version of the image shown in Fig-
ure 12. This is the perspective transformation returned using
the homographymatrix computed from image 12 to image 11

REFERENCES
[1] Osterfelt N. Wells W. Boylan-Peck, B. 2018. MazeDraw. https://github.com/

NickOsterfelt/MazeDraw.
[2] Logan Stevens. 2022. GitHub Repo for VR-racetrack. https://github.com/

loganstevens/racetrack.
[3] Velan Studios. 2020. Mario Kart Live: Home Circuit. https://mklive.nintendo.com.

Accessed: 2022-12-18.
[4] Unity. 2019. About the Mock HMDXR Plugin. https://docs.unity3d.com/Packages/

com.unity.xr.mock-hmd@1.3/manual/index.html. Accessed: 2022-12-18.
[5] Unity. 2022. Unity | ARCADE: Racer. https://assetstore.unity.com/packages/3d/

vehicles/land/arcade-free-racing-car-161085. Accessed: 2022-12-18.
[6] Unity. 2022. Unity | Modular Lowpoly Track Roads. https://assetstore.unity.

com/packages/3d/environments/roadways/modular-lowpoly-track-roads-free-
205188. Accessed: 2022-12-18.

6

https://github.com/NickOsterfelt/MazeDraw
https://github.com/NickOsterfelt/MazeDraw
https://github.com/loganstevens/racetrack
https://github.com/loganstevens/racetrack
https://mklive.nintendo.com
https://docs.unity3d.com/Packages/com.unity.xr.mock-hmd@1.3/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.mock-hmd@1.3/manual/index.html
https://assetstore.unity.com/packages/3d/vehicles/land/arcade-free-racing-car-161085
https://assetstore.unity.com/packages/3d/vehicles/land/arcade-free-racing-car-161085
https://assetstore.unity.com/packages/3d/environments/roadways/modular-lowpoly-track-roads-free-205188
https://assetstore.unity.com/packages/3d/environments/roadways/modular-lowpoly-track-roads-free-205188
https://assetstore.unity.com/packages/3d/environments/roadways/modular-lowpoly-track-roads-free-205188

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Hardware
	3.2 Computer Vision
	3.3 Occupancy Grid Map
	3.4 Game Engine

	4 Conclusion, Limitations & Future Work
	References

