
Actions as Programs in the Modern Era

Angelos Mavrogiannis, Yiannis Aloimonos

Abstract— Perception and planning in robotics have often
been treated as separate problems in the literature. We argue
that this gap occurs because of the absence of a persistent
common representational space for perception and action. We
believe that the most efficient representation that encapsulates
perception and action is a computer program. A program can
incorporate both motoric functions required for planning and
control, and perceptual functions that are essential for sensing
the environment. When called withing the context of a program,
these functions can be combined with expressive programming
constructs such as control flow tools, making them suitable
for downstream tasks that require decision making, such as
planning. We highlight the key advantages of this representation
and discuss new research directions that arise from thinking of
a robot action as a program in a practical robot planning point
of view and in a more algorithmic computer science perspective.

Perception and Action: The problems of planning and
perception were traditionally studied separately by differ-
ent communities. The modeling of the planning problem
occurred on a symbolic level where many mathematical
frameworks such as behavior trees, parse trees, graphs, and
other mechanisms have been employed to represent the
plan of an action [10]. Integrating visual feedback from the
environment into a planning problem is challenging, and
in practice often involves the underlying assumption that
perception is represented as a black box that continuously
delivers 3D descriptions of the world with a number of
labels attached to them. However, this distinction between
perception and planning as two separate processes has not
been helpful for the evolution of the field of robotics. As
the plan of the action is unraveling, a number of perceptual
tests is required at various stages of the computation. Some
of these tests ensure that action pre-conditions are satisfied,
recognize the current stage of the action so that appropriate
motions are generated by the control system, and track
the progress of the robot towards achieving a goal. This
highlights the fact that perception and action are intertwined,
and that one cannot exist without the other in robotics. Based
on these observations and inspired by the Theory of Event
Coding (TEC) [3], we believe that the functional architecture
supporting perception and action planning should be formed
by a common representational domain for perceived events
(perception) and intended or to-be generated events (action).
Motivated by this idea, our insight is that linking actions and
percepts by projecting them to a common programmatic rep-
resentation space leverages the expressiveness of program-
ming constructs and the commonsense reasoning capabilites
of Large Language Models (LLMs), and enables us to reason

The authors are with the Department of Computer Science at the
University of Maryland, College Park, 8125 Paint Branch Dr, College Park,
MD 20742, USA. {angelosm, jyaloimo}@umd.edu

Fig. 1: A preliminary demonstration of our end-to-end
framework actively solving a distance query. The LLM-
generated code invokes the measure distance function
and the find function from the perception-action API.
These are wrapper functions that map to lower-level API
calls accessing an on-board distance sensor and a camera.

towards executing complex tasks and generate perceptually-
grounded action plans. Equipped with a set of logical rea-
soning constructs such as loops and conditionals, a program
serves as an ideal representational medium [7], enabling
function calls to Vision-Language Models (VLMs) [6, 11] to
segment and classify objects of interest [4], and saving their
output to intermediate variables that are consumable down-
stream. These intermediate variables illustrate a step-by-
step explainable reasoning process towards the task at hand,
often expressed in simple python pseudocode-resembling
grammar [13]. The produced plans are interpretable and
flexible in terms of incorporating any vision or language
model API as a function call. At the same time, the generated
programs benefit from the compositional power of LLMs to
decompose high-level tasks into sub-tasks on a lower level
of abstraction without the need of any additional training.
In Fig. 1 we demonstrate preliminary results of our end-to-
end framework that generates action-perception programs for
solving simple natural language queries and executes them
on a ground navigation robot. The demonstrated program
is produced by an LLM prompted with a natural language
query (question) and an action-perception API based on
ViperGPT [13]. This API consists of motoric and perceptual
wrapper functions that map to lower-level controllers and
VLM implementations, respectively. The purpose of this
program is answering a query about the relative distance of
a set of objects to the robot, which is achieved by the call to
a set of action and perceptual wrapper functions combined
with loops and conditionals in python syntax.

Commonsense Reasoning: The idea of modeling actions
as programs has been explored in prior literature [5]. How-



ever, composing these programs previously required skilled
programmers with domain knowledge, and the produced
software was often inadvertently tied to a specific robot
or application. The advent of LLMs and their ability to
synthesize programs have revolutionized this idea. Leverag-
ing a notion of artificial commonsense reasoning acquired
from pre-training on vast internet corpora, these models have
enabled new capabilities especially in the domain of robot
task planning. Applications that previously relied on existing
or manually-crafted knowledge bases to reason about task
execution can now obtain such information by querying a
language model on demand in real time. Experimental results
have shown [12] that the power of LLMs can be leveraged
more efficiently in robot task planning when actions and
tasks are modeled as programs, compared to natural language
representations. This occurs due to the vast presence of code
that is publicly available on the web. Considering a causal
language modeling objective where an LLM predicts the next
word autoregressively, it is harder to reason in the practically
infinite space of free-form natural language. On the other
hand, programming logic can be found in abundance on the
internet and is bound by stricter grammatical and syntactic
rules. This makes programs a convenient medium for mod-
eling problems and solving them through modular decision
making and counterfactual reasoning through control flow
tools and other expressive programming constructs.

Expressiveness: Control flow tools are the structural
components of a programming language. Modeling actions
as programs inherently facilitates counterfactual reasoning
through the imaginary “if...then...else” statement. This state-
ment enables decision making and planning that can be
triggered by potential events, subsuming the functionality
of previously used representations such as binary decision
trees. Furthermore, a lot of tasks in robotics are inherently
repetitive on a certain level of granularity. For example,
a cooking robot instructed to stir a pot might perform
the repetitive motion of rotating a spatula multiple times,
which can be modeled with the construct of a loop. The
action repetition can occur dynamically through a while
loop with an appropriate stopping condition, or statically
for a fixed number of times with a for loop. Additional
programming concepts such as polymorphism are also ap-
plicable to robot planning applications and are currently
underexplored. Overloading a function can map to different
program implementations for the same task depending on
the context and the robot perception of the environment. For
example, imagine that we have access to an LLM planner
that receives a function name describing a high-level task
along with a set of appropriate parameters, and returns a
program that implements this task using a set of actions
that are admissible in the environment. Then, the program
for implementing the function cook(obj: pasta) might
map to a different implementation than the program for
the function cook(obj: pasta, loc: oven) as we
have demonstrated in prior work [8], where obj and loc
correspond to the direct object and location of the action,
respectively. The former program will most likely assume

that a pot is available and will generate a sequence of
instructions that boil the pasta using a pot, following the most
likely pattern seen in the data during the pre-training of the
LLM. However, in the case of adding the oven as an extra
parameter, the latter program will require cooking the pasta
in the oven and will hence map to a different implementation.

Distributability: There is a well-established and widely
used functional infrastructure for software version con-
trol [1], enabling programmers to share, interactively modify,
test, and deploy programs to build software applications.
While there have been attempts on gathering crowdsourced
programs for planning in robotics, they are focusing on a
high-level prompt engineering layer of abstraction [9] which
requires additional intermediate modules for mapping high-
level plans to lower-level realizable robot controllers. There-
fore, there are still exciting opportunities for future research
on leveraging this existing infrastructure and adapting it to
the programmatic action representation in downstream lay-
ers, mapping high-level programs to low-level robot control
programs. We believe that this could be a promising direction
towards building a large dynamic open-source repository of
action programs that are hardware-agnostic and applicable
among different platforms and applications.

Theoretical Benefits: One of the key ideas of the min-
imalist program in linguistics [2] is the optimality of the
human language ability with its underlying components
reducing to a very simple computation. From an evolutionary
perspective, we view the development of action through the
prism of language acquisition. Under this assumption, having
access to a program that describes an action one can ask
further questions about quantifying the optimality of the
action as it exhibits itself through the complexity of the
program, using a computational complexity metric such as
the Kolmogorov complexity. Clearly, when thinking about
the cognitive system of an agent, it is often required that
this agent behaves in an optimal way and hence that the
actions performed by the agent are orchestrated in such a way
that the minimum amount of effort or energy is spent. The
amount of energy spent by a program can theoretically be
computed under the assumption that the cost of all operations
is known. We can extend these thoughts about a single action
to relationships between multiple actions. For example, a
robot programmer can compose three different programs that
all implement the same task with different sequences of
actions. But which one is the best? What is “best” and what
are the criteria? Some criteria could be the minimization or
maximization of the contact of the robot with the world, or
various other constraints and desiderata posed by the problem
at hand. It is one thing to say that you can program the
robot to perform an action and another for the robot to learn
how to reason about which action is better, faster, slower or
whatever the attribute is for the comparison. We believe that
these ideas, driven by thinking of actions as programs, can
give rise to new research directions in the field of robotics,
both in theory, and in practice.



REFERENCES

[1] GitHub. URL https://github.com.
[2] N. Chomsky. The minimalist program. MIT press,

2014.
[3] B. Hommel, J. Müsseler, G. Aschersleben, and

W. Prinz. The theory of event coding (tec): A frame-
work for perception and action planning. Behavioral
and brain sciences, 24(5):849–878, 2001.

[4] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li.
Instruct2act: Mapping multi-modality instructions to
robotic actions with large language model. arXiv
preprint arXiv:2305.11176, 2023.

[5] G. Kazhoyan and M. Beetz. Programming robotic
agents with action descriptions. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 103–108, 2017. doi: 10.1109/
IROS.2017.8202144.

[6] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,
L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

[7] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman,
B. Ichter, P. Florence, and A. Zeng. Code as policies:
Language model programs for embodied control. In
2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 9493–9500. IEEE, 2023.

[8] A. Mavrogiannis, C. Mavrogiannis, and Y. Aloimonos.
Cook2ltl: Translating cooking recipes to ltl formulae
using large language models, 2023.

[9] Microsoft. PromptCraft-Robotics, 2023.
URL https://github.com/microsoft/
PromptCraft-Robotics.

[10] B. Patle, A. Pandey, D. Parhi, A. Jagadeesh, et al.
A review: On path planning strategies for navigation
of mobile robot. Defence Technology, 15(4):582–606,
2019.

[11] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pages 8748–8763. PMLR, 2021.

[12] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu,
J. Tremblay, D. Fox, J. Thomason, and A. Garg.
Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages
11523–11530. IEEE, 2023.

[13] D. Surı́s, S. Menon, and C. Vondrick. Vipergpt: Visual
inference via python execution for reasoning. arXiv
preprint arXiv:2303.08128, 2023.

https://github.com
https://github.com/microsoft/PromptCraft-Robotics
https://github.com/microsoft/PromptCraft-Robotics

